
Périphériques d’interaction, pointage,
latence et fonctions de transfert	

		
		Géry Casiez

Master Informatique - RVA - IHMA

Tâche élémentaires d’interaction

2

• Select	:	pointer	un	objet	(menu,	bouton,	etc.)	
• Position	:	placer	un	objet	sur	1,	2,	3	ou	plus	de	dimensions	
• Orient	:	orienter	un	objet	sur	1,	2,	3	ou	plus	de	dimensions	
• Path	:	dessiner	une	ligne,	courbe,	etc.		
• Text	:	saisir	du	texte	
• Quantify	:	saisir	une	valeur	scalaire

James	D.	Foley	,	Victor	L.	Wallace	,	Peggy	Chan,	1984	
The	human	factors	of	computer	graphics	interaction	techniques	
IEEE	Computer	Graphics	and	Applications,	4(11),	13-48

EntréeTaxonomie des périphériques d’interaction

• Nature	des	degrés	de	liberté	:		discrets	ou	continus	
• Agencement	des	degrés	de	liberté	:	intégrés	ou	séparés	
• Grandeur	physique	mesurée

Jock	D.	Mackinley,	Stuart	K.	Card,	George	G.	Robertson	,	1990	
A	Semantic	Analysis		of	the	Design	Space	of	Input	Devices	
Journal	of	Human-Computer	Interaction,	5	(2),	145-190.

Degré de résistance des ddl

4

isotonique isométriqueélastique

contrôle en vitessecontrôle en position

2D

3D

5[Casiez et al. 2012]

https://gery.casiez.net/1euro/

6

Occlusion and selection point ambiguity can be addressed
with the Offset Cursor [18,21] (Figure 3). The Offset Cur-
sor creates a software pointer a fixed distance above the
finger’s contact point. The Offset Cursor uses take-off se-
lection [18,19] in which the target is selected at the point
where the finger is lifted rather than where it first contacted
the screen. This allows users to touch the screen anywhere
and then drag the pointer into the target. Offset Cursor is in
many ways a software version of a stylus: its pointer pro-
vides a unique selection point and it addresses occlusion by
creating an offset between pointer and finger (in the image
plane rather than above it, as the pen does).

However, the use of the Offset Cursor technique comes at a
price. First, with Offset Cursor users cannot aim for the
actual target anymore. Instead, they need to compensate for
the offset by touching some distance away. Since there is
no visual feedback until contact, users cannot always relia-
bly predict the offset and need to iterate more. In our ex-
perimental evaluation we saw evidence of this with Offset
Cursor acquisition time 1.57 times slower for targets large
enough to select with the bare finger. Second, a constant
offset distance and direction makes some display areas un-
reachable. For example, placing the pointer above the finger
makes a corresponding strip along the bottom of the screen
inaccessible. Although one could vary the offset direction
depending on screen location, this would only exacerbate
the difficulty in compensating for the offset, introducing
even more corrective movement. Third, on first use, users
are unlikely to expect the offset, aim directly for the actual
target, and miss. While this is less of a concern in the case
of a personal device, using Offset Cursor in a walk-up con-
text like a kiosk may be questionable.

To address these disadvantages, we propose Shift. In addi-
tion to offsetting the pointer, Shift offsets the screen content
to avoid all three drawbacks of Offset Cursor and leads to
significantly better targeting performance.

SHIFT
Figure 2 shows a walkthrough of the Shift technique in two
scenarios. Scenario 1: (a) the user touches the screen in-
tending to acquire a small target located near other targets.
Shift determines the presence of targets small enough to be
occluded by the finger (see the DESIGN section for details).

(b) In order to eliminate occlusion, Shift “escalates” by
creating a callout that contains a copy of the occluded
screen area placed in a non-occluded location on the screen.
Similar to Offset Cursor, the callout includes a pointer rep-
resenting the finger contact point to eliminate selection
point ambiguity (c) The user fine-tunes the pointer position
while maintaining contact with the screen; (d) Once the
correct position is visually verified, lifting the finger causes
a brief Phosphor afterglow [4] and completes the selection.

Scenario 2: (f-g) when acquiring a large target, Shift be-
haves differently. Occlusion is not a problem in this case, so
Shift does not escalate by default. By lifting their finger
immediately, the user makes the selection as if using an
unaided touch screen.

Shift avoids the three drawbacks of Offset Cursor:

1) Shift requires interaction overhead only when really nec-
essary, for small targets. This conditional escalation results
in a significant speed-up (see the Experiment section).
Conditional escalation is a property unique to Shift. If ap-
plied to Offset Cursor, users would have to perform addi-
tional movements (Figure 3a) and automatic escalation
could not be determined in some cases (Figure 3b).

2) Shift does not result in any inaccessible screen areas.
While the callout’s default position is above the target, it
can be placed elsewhere to prevent clipping by display
edges (see Figure 7 and the Design section).

3) Shift behaves as touch screen users expect: it allows us-
ers to aim for the target itself. This enables walk-up scenar-
ios. In the worst case where a user ignores the callout, Shift
is no worse than a standard touch screen.

(a) (b)

Figure 3. Shift’s conditional escalation is not practical for Off-
set Cursor: (a) escalating to an Offset Cursor requires a large

corrective movement; (b) users might avoid this by aiming
below the target, but then default escalation may be ambigu-
ous. Is the user trying to select the large target or waiting for
an offset pointer to appear to help acquire the small target?

(f) (g)(b) (c) (d) (e)(a)

scenario 1:
ambiguous target
due to occlusion

scenario 2:
occlusion not a
problem

Figure 2. Shift technique walkthrough. (a-e) Scenario 1, ambiguous target selection due to occlusion: (a) on contact, Shift deter-

mines if occlusion is a problem for targets under the finger; (b) Shift responds by displaying a callout containing a copy of the oc-
cluded area with a pointer showing the finger selection point; (c) keeping the finger on the display, the user makes corrective move-

ments until the pointer is over the target; (d) lifting the finger selects the target; and (e) removes the callout. (f-g) Scenario 2: (f)
when occlusion is not a problem (g) Shift does not “escalate” and instead behaves like a regular, unmodified touch screen.

[Vogel & Baudisch 2007]

Interaction directe

7

8

Multitouch capacitif

• Mesure	de	capacité	
• Lignes	×	Colonnes	
• 2	couches	
• Mesure	à	chaque	intersection	
• Calcul	des	centroïdes

9

10

Interaction indirecte

11

Fonction de
transfert

ro
Cl

12

10

8

6

4

2

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ••• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

••• ■ ■ ■ ■ ■ ■ ■ ■

Fonctions par défaut

- ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ .. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ • •• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ..

■ ■ ■ ■

Xorg

OS X touchpa

■

... 1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ •■ -. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ I ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.2 0.4 0.8 1.0 1.2 0.6
vitesse (m/s)

Windows

OS X souris

Relation linéaire

Gain = 1
12

Relation linéaire

Gain = 4
13

14

D

W

Gain	constants

15

display, and the expected range of target widths and distances. These results
have particular applications to device and pointer function developers, and
future Fitts’ law researchers to ensure they are selecting CD gain levels appro-
priate for the intended hardware, software, and application usage scenario.

To avoid clutching when acquiring distant targets, the user must increase
the device operating range. Based on our experimental results, the maximum
operating range used in the first experiment was 36 cm with a CD gain of 1,
and in the second experiment it was 37 cm with a CD gain of 12 (where partic-
ipants clutched less than 1%). We also found that device speed increased with
larger operating range until a maximum limb speed affects performance. As a
result, we make a conservative estimate that the maximum operating range
(ORmax) should not exceed 30 cm. Using he largest expected target distance
(Dmax), the minimum usable CD gain (CDmin) can be calculated:

CD
D

ORmin
max

max

= (12)

The maximum usable CD gain (CDmax) is the lower bound of maximum us-
able CD gains given human limb precision and device quantization. The
maximum CD gain given limb precision (CDlmax) depends on the minimum
expected target width (Wmin) and the precision of the user’s limbs. We ob-
served accuracy problems with 2 mm targets and CD gain of 12. Because we
used a very high resolution 1600 DPI mouse, these problems must be related
to human accuracy rather than device quantization. Thus the minimum reso-
lution of the hand and fingers (Handres) appears to be about 0.2 mm. Device
quantization can also affect accuracy before this human threshold is reached,
so we must also consider the maximum CD gain given device quantization
(CDqmax) which is the ratio of mouse and screen resolution (Mouseres and
Screenres).

CD CD
Mouse DPI
Screen DPI

CDq
res

res
lmax max maxmin

()
()

,= = =

W
Hand res

min (13)

A graphical interpretation of the usable range of CD gain is shown in
Figure 18. For example, with a 400 DPI mouse, a 20″ display with 100 DPI
resolution, a maximum 360 mm target distance, a minimum 2 mm target

246 CASIEZ ET AL.

Figure 18. Usable CD gain range.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
s
i
e
z
,

G
é
r
y
]

A
t
:

0
9
:
3
6

2
2

S
e
p
t
e
m
b
e
r

2
0
0
8

display, and the expected range of target widths and distances. These results
have particular applications to device and pointer function developers, and
future Fitts’ law researchers to ensure they are selecting CD gain levels appro-
priate for the intended hardware, software, and application usage scenario.

To avoid clutching when acquiring distant targets, the user must increase
the device operating range. Based on our experimental results, the maximum
operating range used in the first experiment was 36 cm with a CD gain of 1,
and in the second experiment it was 37 cm with a CD gain of 12 (where partic-
ipants clutched less than 1%). We also found that device speed increased with
larger operating range until a maximum limb speed affects performance. As a
result, we make a conservative estimate that the maximum operating range
(ORmax) should not exceed 30 cm. Using he largest expected target distance
(Dmax), the minimum usable CD gain (CDmin) can be calculated:

CD
D

ORmin
max

max

= (12)

The maximum usable CD gain (CDmax) is the lower bound of maximum us-
able CD gains given human limb precision and device quantization. The
maximum CD gain given limb precision (CDlmax) depends on the minimum
expected target width (Wmin) and the precision of the user’s limbs. We ob-
served accuracy problems with 2 mm targets and CD gain of 12. Because we
used a very high resolution 1600 DPI mouse, these problems must be related
to human accuracy rather than device quantization. Thus the minimum reso-
lution of the hand and fingers (Handres) appears to be about 0.2 mm. Device
quantization can also affect accuracy before this human threshold is reached,
so we must also consider the maximum CD gain given device quantization
(CDqmax) which is the ratio of mouse and screen resolution (Mouseres and
Screenres).

CD CD
Mouse DPI
Screen DPI

CDq
res

res
lmax max maxmin

()
()

,= = =

W
Hand res

min (13)

A graphical interpretation of the usable range of CD gain is shown in
Figure 18. For example, with a 400 DPI mouse, a 20″ display with 100 DPI
resolution, a maximum 360 mm target distance, a minimum 2 mm target

246 CASIEZ ET AL.

Figure 18. Usable CD gain range.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
s
i
e
z
,

G
é
r
y
]

A
t
:

0
9
:
3
6

2
2

S
e
p
t
e
m
b
e
r

2
0
0
8

[Casiez et al. 2008]

display, and the expected range of target widths and distances. These results
have particular applications to device and pointer function developers, and
future Fitts’ law researchers to ensure they are selecting CD gain levels appro-
priate for the intended hardware, software, and application usage scenario.

To avoid clutching when acquiring distant targets, the user must increase
the device operating range. Based on our experimental results, the maximum
operating range used in the first experiment was 36 cm with a CD gain of 1,
and in the second experiment it was 37 cm with a CD gain of 12 (where partic-
ipants clutched less than 1%). We also found that device speed increased with
larger operating range until a maximum limb speed affects performance. As a
result, we make a conservative estimate that the maximum operating range
(ORmax) should not exceed 30 cm. Using he largest expected target distance
(Dmax), the minimum usable CD gain (CDmin) can be calculated:

CD
D

ORmin
max

max

= (12)

The maximum usable CD gain (CDmax) is the lower bound of maximum us-
able CD gains given human limb precision and device quantization. The
maximum CD gain given limb precision (CDlmax) depends on the minimum
expected target width (Wmin) and the precision of the user’s limbs. We ob-
served accuracy problems with 2 mm targets and CD gain of 12. Because we
used a very high resolution 1600 DPI mouse, these problems must be related
to human accuracy rather than device quantization. Thus the minimum reso-
lution of the hand and fingers (Handres) appears to be about 0.2 mm. Device
quantization can also affect accuracy before this human threshold is reached,
so we must also consider the maximum CD gain given device quantization
(CDqmax) which is the ratio of mouse and screen resolution (Mouseres and
Screenres).

CD CD
Mouse DPI
Screen DPI

CDq
res

res
lmax max maxmin

()
()

,= = =

W
Hand res

min (13)

A graphical interpretation of the usable range of CD gain is shown in
Figure 18. For example, with a 400 DPI mouse, a 20″ display with 100 DPI
resolution, a maximum 360 mm target distance, a minimum 2 mm target

246 CASIEZ ET AL.

Figure 18. Usable CD gain range.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
s
i
e
z
,

G
é
r
y
]

A
t
:

0
9
:
3
6

2
2

S
e
p
t
e
m
b
e
r

2
0
0
8

problèmes de
 débrayage plage utilisable

problèmes
d'échantillonnage

problèmes de
précision des

membres

16

Résolu^on

Figure 2: Raw images captured using an Avago ADNS-2610 sensor. From left to right: white background on a 86 PPI Dell 1905FP; black dots on a
white background with no LED occlusion (same display); same pattern with LED occluded using black tape (same display); white background on a 148
PPI Apple Retina display; black letter ‘d’ on a white background captured on the same display. Note that pixels from the sensor range between 0 and
63. The above images are displayed using re-scaled values between 0 and 255 for better visibility.

system uses custom transfer functions, but their reverse engi-
neering helps determining the appropriate mouse configura-
tion panel settings [5]. On Windows XP, 7, 8 and 10, setting
the slider to one of the 2 last positions when the “enhanced
pointer precision” box is checked results in at least a 1 cur-
sor pixel displacement for every 1 count. When “enhanced
pointer precision” is unchecked, any position higher than the
middle one works. On Linux, any configuration of the set-
tings in the mouse configuration panel works. On OS X, “ac-
celeration” needs to be disabled4 because all settings for non-
linear transfer functions prevent to systematically get at least
one pixel displacement for one count.

We first tried to display and move different textures designed
on the rule of the thumb (grids, images, Perlin noise, ran-
dom noise . . .) but only some of those sometimes produced a
mouse event. Obviously we needed a less arbitrary and more
systematic approach.

What the mouse sees
To help finding the right texture to display, we first needed to
get the raw image from a mouse sensor in order to better un-
derstand “what the mouse is seeing”. We opened a 400 CPI
Logitech M-BT58 mouse and wired its Avago ADNS-26101

sensor to an Arduino board. We chose this mouse as we could
easily find its datasheet, it is widely available and it corre-
sponds to the lowest mouse resolution available (our worse
case scenario). We set the sensor in pixel grab mode, put
the mouse on a LCD screen displaying white background and
black text (without anti-aliasing), and sent the 18⇥18 cap-
tured pixels to a custom made application. This first helped
us to figure out the physical dimensions of the area recorded
by the sensor, which is around 1⇥1mm. On a 100 PPI screen,
this corresponds to about 3⇥3 visible pixels, giving us the
size of our unit pattern for the texture. Figure 2 shows images
captured using the sensor.

We noticed on the captured images that the screen’s pixel grid
and the corresponding small physical separation between its
pixels are visible (Fig. 2), which is known as the “screen

door effect” [2]. This explains why moving a mouse with the
LED obscured on a white on-screen image is still producing
pointer movements: the sensor detects the fixed pixel grid
which is helpful to compute the mouse displacements (this
is how the very first optical mice were working, with a grid
4Using the command defaults write .GlobalPreferences

com.apple.mouse.scaling -1 and logging out and back in.

printed on a dedicated pad). As we will see below, the screen
door effect proved to be an important factor for reliable tex-
ture displacement detection.

What we decided to show
To systematically investigate the textures that could fake a
mouse displacement, we built 512⇥512 pixels textures based
on the repetition of all the possible 3⇥3 patterns composed
of black and white pixels (we discarded gray levels as they
reduce the contrast of the images and reduce the chance of
finding relevant patterns). The mouse was roughly aligned
with the screen edges, so the pixels of the sensor are approx-
imately aligned with the screen ones. We tested the resulting
29 patterns using 9 offset positions and 15 repetitions. The
offset position corresponds to a translation of the starting po-
sition of a texture, between 0 and 2 pixels in x and y. This
ensured invariance with respect to the position of the mouse
sensor on the screen, avoiding to get a texture working just by
chance because the sensor would be well aligned with it.

We developed a testbed application in C++ using the Qt 5
framework. Textures were pre-computed and stored as PNG
images. A trial consisted in displaying a texture with no anti-
aliasing – making sure that one pixel of the texture was cor-
responding to one pixel on screen – and moving it one pixel
along the x screen axis. Trials with no mouse event received
within 200 ms were marked as failed.

We ran this experiment with several mice and monitors. After
that we visually compared the patterns with the higher suc-
cess rate for each pair of mouse and monitor to select the
most robust ones over all the conditions. The patterns that
work best are those that cancel the screen door effect: if the
physical gaps between pixels are visible, the mouse sensor is
likely to detect them as visual features that do not move or
disappear between two captured frames, while other features
in the texture move. In such situations, the mouse is not able
to compute a displacement. As a result, two adjacent pixels
in a texture cannot be white, and working textures are those
made of oblique and non adjacent lines of pixels (e.g. a rep-
etition of the pattern displayed in Figure 3).

Evaluating the texture in different conditions
We evaluated the texture presented in Figure 3 with 10 differ-
ent mice and with 2 monitors using the previously described
application on a laptop MacBook Pro Retina 15-inch (Mid
2014) 2.5 GHz, 16GB Ram, SSD hard drive, 1920⇥1200

~1 mm

17

Caméra	d’une	souris

18

Résolu^on

20 000 CPI

~1 micromètre
400 CPI

~64 micromètres

19

“La résolution utile correspond au plus petit déplacement qu’un
utilisateur peut produire de manière fiable avec une souris.”

20

[Aceituno et al. 2013]

21
[Aceituno et al. 2013]

124
! 63!

47
! 63!

Figure 2: Physical layout (left) and display for failed (top-right) and
successful (bottom-right) trials.

completion, a message indicating whether the trial was suc-
cessful or not was displayed for 750 ms, after which the in-
structions for the next trial were automatically presented.

Twelve unpaid volunteers with a mean age of 24.6 (SD = 2.7)

served in the experiment (8 male, 4 female, all right-handed).
Seven used a computer more than 6 hours a day. Three were
using a mouse in computer games more than 2 hours a day.
None suffered from any visuo-motor impairment.

Design
A repeated-measures within-subjects design was used. The
independent variables were the movement direction (DIR)
and the maximum allowed movement distance in that direc-
tion, expressed as a resolution (RES) to facilitate further dis-
cussion. DIR was evaluated with four levels (EAST, WEST,
NORTH and SOUTH) aligned with the mouse axes. Eight lev-
els of RES were presented : 100, 200, 400, 800, 1280, 1600,
2133 and 3200 CPI.

Participants were given a few minutes to get used to the task
before starting the experiment. Then they completed three
successive BLOCKS. Each BLOCK consisted of 192 trials:
6 repetitions of the 32 DIR × RES combinations. RES were
presented in ascending order. The presentation order for DIR

was counterbalanced across participants using a Latin Square
design. Participants had to press a key after each series of
6 trials to move to the next, and were encouraged to take a
break before doing so. The experiment lasted approximately
40 minutes. At the end of it, participants were interviewed.

In summary, the experimental design was: 12 participants×
3 BLOCKS×4 DIRECTIONS×8 RESOLUTIONS×6 trials =
6912 total trials.

RESULTS
The dependent variable is the success rate. Canceled trials
(10.5%) were filtered out for the analysis. The first trial for
each block was also removed as we observed participants
sometimes did not notice the condition changed. As suc-
cess rate exhibited a non-normal distribution, data were pre-
processed using an Aligned Rank Transform [9]. We then ran
a repeated-measures ANOVA and tested for significant inter-
actions between factors1.

1We used Bonferroni correction for pairwise comparisons, and when
the assumption of sphericity was violated, we corrected the degrees
of freedom using Greenhouse-Geisser estimates of sphericity.

7D
X[
�G
H�
VX
FF
qV

 (%
)

EST
NOR'
SU'
28EST

Direction

Résolution (CPI)
100 200 400 800 1280 1600 2133 3200

100

80

60

40

20

0

Figure 3: Mean success rate for RES and DIR. Error bars represent
95% confidence interval.

We found a significant effect of BLOCK on success rate
(F2,22=18.6, p<0.001). Pairwise comparisons showed a signifi-
cant increase of success rate between the first block and the
two remaining (p<0.05; Block 1: 54.3%, Block 2: 64.6%, Block 3:

67.1%), indicating a learning effect. We thus removed the first
block from subsequent analyses.

DIR was found to have a significant main effect on suc-
cess rate (F3,33=11.5, p<0.001, Figure 3). Pairwise comparisons
showed that NORTH was significantly different from EAST

(p<0.05) and WEST (p<0.05), and that there was a marginally
significant difference between SOUTH and EAST (p=0.055), but
no other significant difference was found (EAST: 74.4%, NORTH:

52.7%, SOUTH: 62.5%, WEST: 73.5%).

We also found a significant main effect of RES (F3.5,38.3=102.2,

p<0.001) and significant DIR × RES interaction (F6.3,68.9=3.4,

p<0.05) on success rate. Pairwise comparisons did not show
significant differences in success rate between directions for
100 and 200 CPI. However, for 400 CPI, success rate was
found significantly lower for NORTH than for WEST (p=0.037).
For 800 CPI, we found that success rate was significantly
lower for NORTH than for EAST (p=0.046) and for WEST

(p=0.010). For 1280 CPI, we found success rate to be sig-
nificantly lower for NORTH than for EAST (p=0.008) and for
WEST (p=0.031). For 1600 CPI, success rate was significantly
higher for EAST than for SOUTH (p=0.030), and it was signif-
icantly lower for NORTH than for WEST (p=0.004). For 2133
CPI and 3200 CPI, no significant difference between direc-
tions was found on success rate.

To compare success rates between resolutions, we removed
for each one the directions with significantly lower success
rate and aggregated the remaining directions. Repeated mea-
sures ANOVA showed a significant main effect of RES on
success rate (F2.8,30.9=31.4, p<0.001). Pairwise comparisons
showed that 100 and 200 CPI were significantly different
from the other resolutions (p<0.03). The average success rate
for resolutions 100 and 200 CPI is 95.5%. Note that we found
the same significant effects when keeping all directions.

DISCUSSION
Our analysis did not show any difference across directions for
100 and 200 CPI, for which participants were able to success-
fully complete the task 95.5% of the time. Significant differ-
ences were found, however, between the CPI ranges [100-
200] and [400-3200]. Our results suggest that the useful res-
olution with the tested device falls within the range [200-400]
CPI for most participants. Using α = 95%, we computed in-

22

cus on the default profile used by Ubuntu (“classic”) and the
relevant settings that can be adjusted through this particular
interface.

Figure 10: Ubuntu 10.10 configuration interface. A help
page says about the first slider: “Use the slider to spec-
ify the speed at which your mouse pointer moves on your
screen when you move your mouse”. About the second:
“Use the slider to specify how sensitive your mouse pointer
is to movements of your mouse”.

When the threshold is non-null, the “classic” profile imple-
ments a smooth transition between the low and high gain val-
ues. The sliders shown in Figure 10 only allow such config-
urations. As the label indicates, the upper slider controls the
acceleration setting. When dragged, it feels like a contin-
uous control but actually supports only a predefined set of
values: (slow) 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10, 10/10,
1/1, 3/2, 2/1 (default), 5/2, 3/1, 7/2, 4/1, 9/2, 5/1, 11/2, and
6/1 (fast). The bottom slider controls the threshold and ac-
tually feels like a discrete control. The available values are:
(low) 1, 2, 3, 4 (default), 5, 6, 7, 8, 9, and 10 (high). In
total, the interface shown in Figure 10 thus gives access to
19⇥ 10 = 190 configurations of the “classic” profile.

Figure 7 shows a plot of these 190 functions. As one would
expect, the 90 functions with an acceleration setting lesser or
equal than 1, those labeled */10-*, correspond to a naive con-
stant gain of 1 (considering the 400 CPI and 96 PPI used for
plotting the curves). Note that this is the only naive constant
gain achievable through the interface shown in Figure 10 and
that this interface does not allow to achieve a unitless con-
stant gain.

Summary
Figure 9 shows the default transfer functions used by Win-
dows, OS X and Xorg. Overall, despite a few differences,
the different families have a lot in common.

The three systems take only partially into account the char-
acteristics of the input and output devices. OS X is the only
system that uses the real resolution of the input device (Win-
dows assumes a 400 CPI resolution and Xorg does not use
it). Xorg is the only system that takes input event times into
account (the two others use harwired constant frequencies).
Xorg completely ignores the display frequency and resolu-
tion while OS X uses hardwired constants for them (Win-
dows varies on that topic).

All systems use a non linear function by default, but Win-
dows and Xorg also support the use of naive constant gain
functions. As the systems fail to properly take into account
the resolution and frequency of the devices, none actually
supports a unitless constant gain.

Windows and OS X both use fixed-point arithmetic. The
three systems work with integer pixel coordinates but pre-
serve the remainders to achieve subpixel precision when

pointing. Windows 7, Mac OS X and Xorg never clear these
remainders while they are cleared using different strategies
on Windows XP and Vista.

The comparison of our custom cursors with the three system
ones validated our Windows and Xorg implementations but
revealed a slight difference for OS X presumably due to a
trajectory prediction algorithm requiring information we are
not yet able to provide.

EXPERIMENT
Our initial motivation for this experiment was to compare the
performance of real-world transfer functions. Assuming they
were probably used by many people and somewhat represen-
tative of theses systems, we decided to compare the default
functions used by Windows, OS X and Xorg. We also added
a constant CD gain function, as they are often used as a base-
line for comparing pointing facilitation techniques.

Apparatus
A 400 CPI USB corded Logitech mouse was used as input
device. A low-end model was preferred to a high-resolution
one as 400 CPI is the default resolution considered by all
systems. We used a 23" LCD display at a 1920 ⇥ 1200 reso-
lution (98.5 PPI). The experiment was coded in C++ with the
QT framework on a Windows 7 Professional machine with a
NVidia GeForce GTX 460 graphics card. Our libpointing
toolkit was used to get raw input from the mouse and apply
the different transfer functions. Vertical synchronization of
the display was disabled in order to be able to update our
cursor’s position at the mouse frequency (125 Hz). In this
configuration, our controlled cursor was slightly in advance
compared to the system one, which prevented any confound-
ing effect of lag in the experiment.

Task
We used a reciprocal one dimensional pointing task (Figure
11). Each trial began after the previous target was success-
fully selected and ended with the selection of the current tar-
get. After a target was successfully selected, it turned grey
and the next one (on the other side of the screen) turned
green. If a participant missed a target, a sound was heard
and an error was logged. Participants had to successfully se-
lect the current target before moving to the next one, even if
it required multiple clicks. Participants used the left mouse
button to select targets. After each block of trials, a cumula-
tive error rate was displayed and a message encouraged par-
ticipants to conform to an approximately 4% error rate by
speeding up or slowing down.

Participants
Sixteen unpaid participants with a mean age of 30.6 (SD = 7.8,
min = 23, max = 46) served in the experiment (15 male and
1 female, 13 right-handed and 3 left-handed). All participants
worked most of their time with a computer. Three partici-
pants used exclusively OS X, four Windows 7, three Ubuntu
10.10. Two used Ubuntu 10.10 and Windows 7, two OS
X and Windows 7, one Ubuntu 10.10 and OS X, and one
Windows 7 and Ubuntu 10.10. Four participants used the
mouse exclusively, two the touchpad and the remainder both
devices. Among the sixteen participants, twelve kept the de-
fault settings for the mouse or touchpad while four slightly

Paper Session: Pointing UIST’11, October 16–19, 2011, Santa Barbara, CA, USA

611

Windows

Linux

Mac

23

24

ro
Cl

12

10

8

6

4

2

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ••• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

••• ■ ■ ■ ■ ■ ■ ■ ■

Fonctions par défaut

- ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ .. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ • •• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ..

■ ■ ■ ■

Xorg

OS X touchpa

■

... 1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ •■ -. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ I ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.2 0.4 0.8 1.0 1.2 0.6
vitesse (m/s)

Windows

OS X souris

25

Fonctions non linéaires

Modèle de l’impulsion initiale optimisée [Meyer et al.] 

début du
mouvement

te
e

em

n du ou mouvement
m e

n du
mouvement

Gains élevés

Gains faibles

26

http://libpointing.org

27
[Casiez & Roussel 2011]

!"!#
!"$#
!"%#
!"&#
!"'#
("!#
("$#
("%#
("&#
("'#
$"!#
$"$#
$"%#
$"&#
$"'#
)"!#
)"$#

(+,-el#) +,-els# & +,-els# . +,-els#

Te
m
ps
(*+
,(

Largeur(

/onst.#

34 5#

*,6dows#

Linux#

counts
distance

écran
(m)

distance
espace moteur

(m)

résolution
souris
(CPI)

vitesse
(m.s-1)

étiquettes de
temps

(s)

pixels

résolution
de l’écran

(PPI)gain

28

29

II II CPI (Input) DPI (Output) Area between curves Discrete Frechet Arc-length DTW Assessors’ choices

400 122
400 87
800 87
1600 122
1600 87
3200 122
3200 87

WIN+5
WIN+5
WIN 0
WIN�2
WIN�3
WIN�4
WIN�4

WIN+5 WIN+2
WIN 0

WIN+2
WIN 0

WIN+2
WIN 0 WIN+5

WIN 0 WIN 0 WIN 0 WIN 0
WIN�1 WIN 0

WIN 0
WIN+3
WIN 0

WIN 0
WIN 0
WIN+3
WIN 0

WIN 0
WIN 0
WIN+3
WIN 0

WIN-3
WIN-4
WIN-4

Replicate the pointing transfer function from an experiment
Thlstoollsdes~nedtocreateanhardware-lndepcndenttransferlunc1lon1orepilca1eapolntingtransfertunctloo fromprevlousworkanduseltln
libpoinling, Thefe is no need to use the sa rm, hardwan, as the origina l e~periJTl8!lt.

Experimental settings you want to repllcale

8 Mouse resolution(CPl orDPII

J\r Mouse ir,put frequency(Hz)

0 Dispiaypi~eldensity(OPIJ 298

Opera ting System Windows10

Adiu•IIM•lider or,Jchod<boxb.lowtor.plicatolho H tting• ""ed intho
e, pe~ment

Q Enl'lanoopain..,.~

STEP 2:111 the....,.,.., ruolu1ion and pixol d~mitv of tho di~•Y u- 10 replic•1• U>•
,,.,..1.,, ... 011on

Hardware characterist ics for your experiment

I Mouseresolution (CPlor DP1J 800

-'lr Mouse input frequencylHzl

0Dlsplay pixeldenslty(DPI)

Click to download the transfer function

https:J/github.com/lNRIA,llibpointing/wikVCustom-Functions

Educate your computer mouse
This tool he lps you adjust the mouse settings in the configuration panel to mimic the cursor behavior you ha...e on another computer with ditferenl
computer mouse/monitor.

Configuration of the computer with the cursor
behavior you want to mimick

IMouseresolutioo (CPl or DPI)

"\,, Mouseinputfrequency(Hz)

l;I Displaypixe l density(DPI)

Adj<,<1tho slidorar,dchedbo, 1>olowto repl;ca1oa, actfywhatai,0<a~lntho
mo,,so mnr;guralioopano l

'

Conllgurallon of the computer where you want to
replicate thecursOfbehavior

8MouseresolutionlCPl orDPI)

"\,, Mouseinput frequer.cy(Hzl

c;JDisplaypixeldensil y(OPI)

Relevance and Applicability of Hardware-independent Pointing Transfer Functions UIST ’21, October 10–14, 2021, Virtual Event, USA

Table 2: Windows transfer functions with smallest distance to the baseline function when measured with di�erent similarity
measures. Cells are colored in green when the transfer functions are the same as the one selected by the assessors.

Figure 5: User interface of the Scaling tool. Users specify
source hardware and software con�guration (Step 1), as well
as destination hardware con�guration (Step 2). Scaling tool
generates a transfer function that can be downloaded (Step
3) and used with libpointing to replicate the source pointing
behavior with the new hardware.

method17 of the libpointing library, to bypass the default transfer
function and apply the new one.

6.2 Closest tool: assisting end-users to set up
several con�gurations

Using the Scaling tool is not always possible, for instance for people
with no programming skills, or when they cannot or do not want to
install a background software that would modify pointing behavior.
Therefore, we built a second tool with end-users in mind, that
can be used to con�gure two di�erent computers with relatively
similar pointing transfer functions, only using available OS pointer
settings.

Bob is a middle-aged o�ce worker who, because of the COVID-
19 situation, is constrained to split his work time between his usual
work station at the o�ce, and a new one set at home under the
circumstances. Each of these stations is equipped with a desktop
computer running Microsoft Windows, a monitor, a keyboard, and
a mouse controller. Unfortunately, the monitors and mouse con-
trollers are of di�erent models and resolutions. Therefore, Bob
wants to change the pointer setting of his new home computer

17https://github.com/INRIA/libpointing/blob/master/pointing/transferfunctions/
windows/winSystemPointerAcceleration.cpp#L90

to obtain a cursor behavior similar to the one at work. He starts
the Closest tool and speci�es in the left part (Figure 6-Step 1) the
required information about his o�ce workstation: input and out-
put device resolutions, and pointing setting of the computer. He
then enters the information relative to the mouse and display for
his home computer (Figure 6-Step 2), and possibly the Windows
version if it di�ers. As a result, the Closest tool indicates which
setting should be selected in his home OS to obtain a mouse behav-
ior as similar as possible to his home computer’s (Figure 6-Step 3).
Warning messages can be displayed if the con�gurations are too
di�erent.

Figure 6: User interface of the Closest tool. Users specify
source hardware and software con�guration (Step 1), as well
as destination hardware con�guration (Step 2). Closest tool
suggests which settings to select on the destination com-
puter (Step 3).

The Closest tool was implemented using the same Node.js 12.6
and Python 3 technology as the Scaling tool. Suggested transfer
functions correspond to functions with the lowest distance found
using the area-between-two-curves metric with the speci�ed input
and output resolutions.

Two di�erent types of warnings can be displayed. First, if the
speci�ed resolutions or transfer functions di�er from the ones tested
in our second experiment, users are warned that the suggested
closest function has not been validated by human assessors. Second,
if the di�erence between the initial and suggested functions is
considered “too large”, i.e. higher than 0.53 for the reason presented
in section 5.9, users are warned that the function might yield a
noticeably di�erent pointing behavior.

534

[Hanada et al. 2021]

ns.inria.fr/loki/tftools

2:39:30 / 7:14:13

Les pixels ne sont
pas suffisants pour 
interagir.

“Bergensbanen” - NRK

7:14:13 ➟ 26 053 secondes ➟ 1 302 650 frames

2:37:35 - 2:37:40

1:41:39 - 1:41:44

4:55:15 - 4:55:20

30

http://nrkbeta.no/2009/12/18/bergensbanen-eng/

31

32

événements 
souris 
(floats)

Toolkit(s)

dx, dy 
(floats)

Interactions spécifiques

Application

cardinalité

du modèle

specs

capacités

33[Roussel et al. 2012]

dx, dy 
(counts)
specs

Fonction de 
transfert

Vmin Vpix

Gpix

Gmin

Vuse

Gopt + + +
+

+

+
+

+

+
+++++

motor speed (m.s)

ga
in

34

35

36

Machine

périphériques de sortie

périphériques d’entrée

37
[Ng et al. 2012, Jota et al. 2013]

38

2mm

[MacKenzie et al. 93, Pavlovych et al. 09, Teather et al. 09, Pavlovych et al. 12, Claypool et al. 14]

39

T0T1

40

41

processes the event and applies the transfer function to move
the system pointer (System pointer moved). Upon notification
of this pointer movement, the toolkit creates an event (Mouse-

Move event created) and dispatches it to the appropriate wid-
get (MouseMove event dispatched). The end-to-end latency
we measure is the time elapsed between Window repaint and
MouseMove event dispatched. Three probes inserted at steps
1, 2 & 3 (Fig. 4) allow us to further characterize this latency.

MouseMove
event

created

HID
report
sent

HID
report

received

System
pointer
moved

MouseMove
event

dispatched

Window
repaint

mouse

USB
linkOS

app

time

On-screen
texture
moveddisplay

toolkit

0

1

2

3

4

Figure 4: Conceptual pipeline between a (simulated) physical movement
of the mouse and the notification of this movement to the appropriate
on-screen widget. Our system is able to measure end-to-end latency by
inserting probes at different software locations, numbered from 1 to 4.

Comparison of different toolkits
We used libpointing6 [5] to get notifications of HID re-
ports reception and platform-specific code (Quartz event
taps) for notifications of system pointer updates on OS X.
We implemented these probes along with toolkit-specific
code for Mouse Move event creation and dispatching us-
ing C++ / GLUT, C++ / Qt and Java / Swing on the Ap-
ple MacBook Pro laptop previously described. All probes
were implemented as asynchronous and non-blocking call-
backs. All toolkits used double buffering for the dis-
play. Timestamps were measured with sub-millisecond pre-
cision with GetSystemTimeAsFileTime on Windows 7 and
gettimeofday on Linux and OS X.

We compared the measurements obtained on 1000 trials with
our three implementations using a Logitech MX310 mouse.
Table 2 shows the success rate (percentage of texture dis-
placements that resulted in a valid MouseMove event, i.e. one
that matches the sequence of observations illustrated by Fig-
ure 4), mean end-to-end latency (time between repaint and
the first dispatched MouseMove event) and the correspond-
ing standard deviation. Results show substantial differences
between GLUT and Swing or Qt in terms of mean latency
but comparable standard deviations. Note that in the three
cases, the latency introduced by the movement of the sys-
tem pointer and the toolkit is below 2 ms. Figure 5 shows
6http://libpointing.org

the distribution of lag measurements between repaint and the
first MouseMove. This plot shows a clear difference between
Java / Swing and C++ / Qt despite comparable mean values,
for which we are unable to provide a definite explanation. The
differences illustrated by Table 2 and Figure 5 clearly require
further investigation.

0
2
4
6
8

10
12
14

C++ / GLUT

0

5

10

15

20

25

30
Java / Swing

30 40 50 60 70 80
0

50

100

150

200

250
C++ / Qt

Figure 5: Distributions of the time (in ms) elapsed between Window
repaint and the first MouseMove event dispatched using the Logitech
MX310 and different toolkits on a MacBook Pro.

Comparison with other systems
We measured end-to-end latency on Linux Ubuntu 14.04,
Windows 7 Pro and web browsers, all on the same
machine, an Asus N53JQ (i7Q740@1.73GHz, 4Gio
DDR3@1333MHz, Nvidia Geforce GT425M 1Gio, 250 Gio
SSD). We used the previously described Dell 1905fp monitor
and the Logitech MX310 mouse. End-to-end latency was
measured using our Qt 5 application. For web browsers we
used an HTML5 / Javascript version performing the same
measures. Latency was measured from texture translation to
the mouse move event received by the toolkit.

Application mean std
Ubuntu 14.04 Qt 5 app 50.9 ms 7.6 ms

Chrome 41 71.3 ms 5.7 ms
Firefox 35 65.7 ms 6.6 ms

Windows 7 Qt 5 app 74.9 ms 9.2 ms
Chrome 41 62.2 ms 8.5 ms
Firefox 37 83.0 ms 9.7 ms

Table 3: End-to-end latency on different operating systems and web
browsers measured on the same computer (Asus N53JQ with a Logitech
MX310 mouse and a Dell 1905fp monitor).

On Linux Ubuntu 14.04, latency is comparable with OS X
10.10, although measured on a different machine. The web
browsers add between 15-20 ms latency compared to Qt 5
while jitter remains similar (Table 3). Results on Windows 7
are more surprising: latency on Chrome 41 is lower than the
one found on Qt 5. We repeated the measures several times
and we kept finding the same results.

[Casiez et al. 2015]

42
[Casiez et al. 2017]

43

44

45

iPhone 6 iPad Air 2 Nexus 10 - Android 5.1.1 MOTO X2 - Android 6.0 Galaxy S7 Edge - Android 7.0
end-to-end end-to-end repaint end-to-end repaint end-to-end repaint end-to-end

native 53.0 (4.0) 48.3 (5.3) 23.7 (3.6) 76.0 (5.5) 25.5 (2.2) 68.5 (4.7) 14.2 (3.2) 67.3 (5.5)
Qt 52.6 (4.0) 73.3 (6.2) 26.5 (3.5) 116.4 (5.6) 15.8 (2.6) 70.8 (6.0) 14.2 (3.0) 75.1 (5.3)
JavaFX 70.4 (7.1) 66.2 (8.3) 29.3 (3.6) 89.6 (7.3) 20.7 (2.3) 69.8 (6.5) 19.6 (3.1) 78.2 (7.0)
Unity3D 66.1 (9.5) 65.8 (9.0) 45.9 (5.2) 116.3 (5.3) 37.2 (4.6) 108.2 (4.6) 33.9 (5.4) 108.3 (5.6)

HTML5 / Canvas 100.8 (6.3) 77.0 (5.2) 28.0 (3.4) 275.9 (17.1) 16.1 (2.5) 61.8 (5.5) 13.6 (3.6) 74.5 (6.2)
HTML5 / CSS 82.5 (4.8) 83.3 (7.0) 28.2 (3.4) 80.3 (5.4) 26.6 (2.4) 71.0 (5.1) 14.2 (3.4) 76.4 (8.6)
HTML5 / WebGL 67.4 (5.0) 64.2 (5.1) 25.8 (3.3) 78.7 (5.6) 16.6 (2.7) 62.6 (5.7) 16.2 (2.7) 76.7 (6.1)

Table 7: Mean and (std) of end-to-end latency (ms) on an iPhone 6, iPad Air 2, both running iOS 10.2.1, a Nexus 10 running Android 5.1.1, a MOTO
X2 running Android 6.0 and a Galaxy S7 Edge running Android 7.0; all using native application (Cocoa or Java), Qt, JavaFX and Unity3D toolkits in
addition to HTML5 applications running in Safari and using a standard canvas, CSS and WebGL.

APPENDIX
This appendix reports on measures performed on various
touch surfaces and keyboards.

Comparison of toolkits on touch devices
We compared different toolkits and Web applications on an
iPhone 6 and an iPad Air 2 both running iOS 10.2.1, a Nexus
10 running Android 5.1.1, a MOTO X2 running Android 6.0
and a Galaxy S7 Edge running Android 7.0. For each system,
we developed a native test application using Java or Cocoa
and alternative ones using Qt, JavaFX and Unity3D. We also
developed three HTML5/JavaScript test applications on Sa-
fari (for iOS) and Chrome (for Android): a standard HTML
canvas filling all the page; an HTML document using CSS;
and a WebGL scene using Three.js9.

All the test applications we developed were instrumented so
as to log repaint events in a file using millisecond or sub-
millisecond precision timestamps. Measures on Android de-
vices were performed with the Arduino directly connected
to them through a USB port and using a custom service that
logged its events into a file. By merging this log with the one
recorded by the test application in use, we were able to com-
pute not only the end-to-end latency but also the time between
the user action and the application drawing code (repaint). As
we were unable to directly connect it to the iPhone or iPad,
Arduino events were logged on an auxiliary computer when
testing these devices, which made it only possible to compute
the end-to-end latency10.

Our measures are summarized in Table 7. The ones obtained
with our iPhone 6 (53 ms) and iPad Air 2 (48 ms) are close
to what was obtained by Deber et al. with an iPhone 6 (52.3
ms) and an iPad mini (54 ms) running iOS 8.4.1 [7]. The
measures obtained with our Nexus 10 (76.0 ms) is also close
to the 73.2 ms they reported for a Nexus 9 running Android
5.1.1.

Overall, the observed end-to-end latency ranges from 48 to
276 ms depending on the device / system / toolkit, replicat-
ing results from the literature [14] where the tested systems
were not described. For the same toolkit, results can be quite
different between devices / systems. Our Qt application has a
9https://threejs.org/

10Synchronizing the clocks of the iOS devices and the auxiliary com-
puter would allow other computations, but we did not even try to go
that far.

high latency on the Nexus 10 for example (116.4 ms) but the
same application on the MOTO X2 exhibits 45.6 ms less la-
tency. The same is true for HTML5/Canvas. The general rule
we observe is that using a native language/toolkit is usually
the best choice for minimizing the end-to-end latency, while
HTML5/WebGL seems a good alternative for cross-platform
Web development.

For Android devices, the repaint columns of Table 7 show
the time between user action and the moment when the ap-
plication starts drawing in response to it. With the exception
of Unity3D, this “reaction time” was quite consistent across
toolkits for a given hardware and Android version, which fur-
ther hints at an important contribution of the “drawing and
refresh time” to end-to-end latency.

Measuring latency on trackpads and keyboards
We finally measured the latency of the MacBook Pro when
using its internal keyboard and trackpad, as well as external
Bluetooth ones (Apple Wireless Keyboard and Apple Magic
Trackpad 1). We again used the C++/Qt application. With
both the internal and the external trackpads, we were sur-
prised to measure high end-to-end latencies, above 230 ms
(see Table 8). After observing this, however, we hypothesized
the system waits for more than 150 ms upon touch detection,
presumably to determine if a gesture or other contacts will
follow before generating the event. To validate this hypoth-
esis, we repeated the measures by placing a first finger on
the trackpad and using second one to tap on the surface. The
time until repaint dropped drastically around 30 ms. We per-
formed similar measures with the keyboards. While we ex-
pected higher latencies with the wireless one, we found very
similar values between the two.

46

47https://www.nvidia.com/en-us/geforce/news/nvidia-reviewer-toolkit/

48

Entre 50 et 200 ms Entre 20 et 125 ms

49

dernière position détectée

position courante
position extrapolée

50

51

52

53

Dessin Déplacement d’objet

Déplacement de point de vue

54

Analyse	théma^que

30 mots-clés, 4 catégories :
- Effets indésirables (8 mots-clés)
- Conséquences (8 mots-clés)
- Contexte (13 mots-clés)
- Non-négatif (1 mots-clé)

“trop rapide"
“ne va pas dans la bonne direction"
“tremble"

Retard Sur-anticipation

55

Mauvaise distance

Mauvaise orientation Tremblements Sauts

Effet ressort

56

PréditAcquis

Retard

Erreur quadratique moyenne

57

≈

Retard Orientation

PréditAcquisErreur quadratique moyenne

58

≈ ≈

Retard TremblementOrientation

PréditAcquisErreur quadratique moyenne

59

Magnitude de la métrique

Probabilité

#participants ⨉ #tâches

0

1

Taylor1

Curve fit
Control

Kalman
HeuristicsTaylor2

#mentions d’un effet indésirable
(pour une technique de compensation)

Point prédit

Point acquis α

f

d

Point acquis suivant

[Nancel et al. 2016]

60

DISCUSSION
Our experiment results and metric development motivate sev-
eral topics for discussion.

Noticing Latency is Least Disturbing
A general finding is that perceiving latency is less disturb-
ing than other types of spatial error side-effects introduced
by total-prediction methods. This is shown by lower distur-
bance ratings for the CONTROL condition (see p.) and the
“lateness” side-effect (Table 1). Some participants explicitly
stated a preference for latency over other errors. To be clear,
this does not mean latency is preferred over no latency (refer
to research surveyed earlier in this paper) nor does it signal
the end for prediction research.

Our results suggest that predictors that reduce some latency
without side effects are preferred to those that remove all la-
tency with visible side effects. We emphasize the importance
of designing prediction methods that keep other types of side-
effects below a perceivable threshold.

Traditional metrics model side-effects poorly
Our work reveals that RMSE and max Euclidean distance
(tested using 95th percentile) do not quantify the kinds of pre-
diction errors that really disturb people. We found they have
reasonable correlations with the least disturbing “lateness”
side-effect (thought not as well as our lateness metric), but
they poorly capture most other side-effects (see Table 5 and
Appendix II). Moreover, RMSE and max Euclidean distance
correlate negatively with “jitter” and “jumps” side-effects
(slope m< 0 and r2 > .65 in Table 5) which means selecting a
predictor based on their lower scores could actually increase
the risk of these side-effects emerging.

Similar side-effects, metrics, and models
Some SIDE-EFFECTS are positively correlated in their re-
sponse (Table 4) or in their metric, which raises the question
of whether they are redundant. We identify three possible
causes, informed by our observations during the study.

Perceptual framework – Thematic analysis relies on the
participants’ capacity to describe an observation accurately
and in a consistent way. In effect, it emerged that our
SIDE-EFFECT codes can be categorized by the perspective
they express, e.g. temporal errors (“latency” and “over-
anticipate”), geometric errors (“wrong orientation” and
“wrong distance”), instability (“jitter” and “jumps”), or
metaphors (“spring effect” and “stick”). Interestingly, these

perspectives also emerged in our metrics: “latency” and
“over-anticipate” are best modeled by similar formulae with
different settings; the same goes for “jitter” and “jumps”. In
both cases, the side effects are not correlated (Table 4).

Hierarchical formulations – However these perspectives are
not mutually exclusive, and similar phenomena can be ex-
pressed differently under different perspectives. For instance,
while “spring effect” is a clear case of both “wrong orienta-
tion” and “wrong distance”, no significant correlation was
found. Similarly, while “latency” and “jumps” both im-
ply that the distance between finger and prediction must be
wrong, we found respectively a significant negative correla-
tion and no correlation with “wrong distance”. Overall, we
propose that users perceive or describe prediction errors first
as metaphors (e.g. a “spring” or a “stick”) or known phenom-
ena (e.g. “latency” and “jumps”), and then resort to geometric
descriptions if necessary. This would explain why arguably
trivial geometric phenomena prove challenging to formulate,
since they were not systematically reported as such.

Causal relationships – We propose that some SIDE-EFFECTS
are consequences of others, which affects their correlations
and models. For instance, “over-anticipate” expresses that
predictors were too prompt to react to changes in speed or
orientation, making the reaction disproportionate. This could
result in the prediction being far from the finger or going in
the wrong direction. Some instances of “wrong distance”
and “wrong orientation” could therefore be consequences of
“over-anticipation”. This would explain the high correlation
between the three (Table 4), and the fact that we could not
produce a metric for “wrong distance” that could beat the
“over-anticipation” metric.

Note that despite these similarities we did not merge
similarly-modelled or correlated side-effects. Our primarily
objective remains to predict what users perceive as disturbing
prediction behaviours.

Visual feedback
The nature of the reported side-effects can be strongly af-
fected by the visual feedback during different tasks (Table 2).
Some terms are directly linked to the visual feedback: “stick”
requires a trace (DRAWING), and “jumps” is more fitting to a
translation metaphor (DRAGGING, PANNING). Others terms,
while not systematically linked to a given task, might still be
affected. For instance, having a thick line linking the last de-
tected point to the prediction (DRAWING) likely emphasized

“lateness” “over-anticipate” “wrong distance” “wrong orientation” “jitter” “jumps” “spring effect”
m b r2 m b r2 m b r2 m b r2 m b r2 m b r2 m b r2

RMSE metric 0.3 -10.0 0.81 -0.1 31.4 0.14 -0.1 43.7 0.49 -0.1 22.8 0.35 -0.2 49.6 0.76 -0.2 37.2 0.82 -0.0 21.8 0.22
95th percentile metric 0.1 -12.6 0.74 -0.0 31.4 0.11 -0.1 45.3 0.45 -0.0 24.4 0.37 -0.1 51.0 0.66 -0.1 39.0 0.75 -0.0 22.7 0.24

Lateness metric 0.2 -5.9 0.90 -0.1 34.4 0.32 -0.2 43.6 0.70 -0.1 22.6 0.49 -0.2 44.3 0.74 -0.1 33.6 0.82 -0.0 21.3 0.26
Over-anticipation metric -0.6 43.5 0.65 0.6 1.0 0.89 0.5 8.8 0.78 0.2 5.4 0.44 0.4 7.1 0.37 0.3 7.0 0.34 0.1 13.5 0.11
Wrong orientation metric -2.3 79.1 0.86 0.9 -2.4 0.22 1.4 -9.4 0.61 1.0 -10.6 0.76 1.7 -20.6 0.59 1.4 -17.3 0.78 0.1 12.9 0.03

Jitter metric -2.2 72.4 0.85 0.9 -0.7 0.24 1.5 -7.7 0.71 0.7 -2.5 0.42 2.0 -22.8 0.84 1.5 -17.2 0.99 0.2 11.2 0.09
Jump metric -2.0 59.5 0.76 0.7 8.4 0.13 1.3 1.8 0.59 0.6 1.9 0.35 1.9 -12.9 0.82 1.5 -10.0 1.00 0.2 13.0 0.06

Spring effect metric -538.6 25.5 0.01 986.1 16.0 0.03 607.1 22.3 0.01 -35.9 13.1 0.00 7.0 20.8 0.00 -65.0 16.5 0.00 2006.9 7.3 0.77

Table 5: Slope (m), intercept (b) and correlation (r2) for linear regressions for each metric and side-effect. The regression models the probability of
noticing a side-effect (in %) based on the side-effect magnitude for each predictor computed by the metric. Highest r2 value by row and column in bold.

[Nancel et al. 2016]

61[Nancel et al. 2018]

62http://ns.inria.fr/loki/TTp/

TurboMouse

63

Accéléromètre

[Antoine et al. 2018]

Profils d’accélération

Calculée à partir 
de dérivées

Mesurée avec 
un accéléromètre

64

65

corrected velocity vcorrected and the acceleration a (eq. 3).
We also smoothed the predicted positions with 1e filter [12]
empirically tuned with 12 Hz mincutoff and 0 beta values for
each axis (x and y).

EVALUATING PREDICTION QUALITY
We conducted a first experiment in order to compare the perfor-
mance of TurboMouse in terms of prediction accuracy to other
predictors from the literature. This experiment consisted in
performing various tasks in order to first collect input events
from the mouse sensor and the accelerometer, and then to
use these input events to compute metrics that are used as
benchmarks for prediction methods.

Data collection
Tasks and procedure
Participants were instructed to perform drawing and pointing
tasks as quickly and accurately as possible. The drawing task
consisted in dragging the mouse cursor over different shapes
displayed at the center of the screen (square, circle, triangle
and infinity symbol), without any suggested width on the shape
outline participants had to stay in. To complete a dragging
operation, participants had to position the mouse cursor within
a red circle located somewhere along the shape (Figure 3-
left), drag the mouse cursor all over the shape while holding
the mouse button, and release the mouse button when back
in the red circle. If a mouse press or mouse release event
occurred outside the red circle, the trial was not considered
and participants had to perform it again.

The pointing task was a 2D reciprocal pointing task with 13
targets positioned along a circle (Figure 3-right) following the
norm ISO 9241-9 (§B.6.2.2) [21]. For each trial, participants
had to select a target of a width W and located at a distance
D from the initial position of the cursor. To select the target,
participants had to position the mouse cursor over the target
and click on it. The experimental software moved to the next
trial only when the target was correctly selected.

Once correctly selected, the current target was hidden and the
next target was highlighted on the screen (with only one target
highlighted on screen at a time). For both tasks we collected
all input events from the mouse and the accelerometer. The
operating system transfer function was disabled in order to
be able to collect data with two different transfer functions.
No software compensation of latency was provided in this
experiment.

Design
The experiment used a 2⇥ 2 within-subject design for the
main factors task (pointing or drawing) and transfer function
(sigmoid or constant gain of 4). We used the sigmoid function
that mimics the default macOS transfer function provided
by libpointing [11], that we configured with the following
parameters: (gmin=1 gmax=15 v1=0.05 m/s v2=0.6 m/s).

The experimental design then varied depending on the task.
Drawing tasks used a 4 ⇥ 2 ⇥ 2 design with factors shape
(square, circle, triangle and infinity), shape size (75mm,
150mm) and direction (clockwise, counter-clockwise). Shape
and direction were presented to participants in a random order.

Figure 3: In the drawing task (left) participants had to follow the shape

outline in dragging mode by pressing and releasing mouse button in the

red circle. The direction is indicated by the arrow. In the pointing task

(right) participants had to press and release the mouse button on the

green target. Opposite target to the current one becomes green until all

targets have been selected.

Pointing tasks used a 2⇥2⇥12 design with factors target dis-
tance (75mm, 150mm), target width (2mm, 7mm), repetition
(1-13, with the first repetition being systematically discarded
since used to control the initial cursor position). Combina-
tion of distance and width were presented to participants in a
random order.

All participants performed both tasks, each task being tested
with both transfer functions. In total, each participant per-
formed 2⇥4⇥2⇥2 = 36 dragging trials and 2⇥2⇥2⇥12 =
96 pointing trials for a total number of trials of 132 trials.

Apparatus and participants
This experiment was conducted on a Mid 2015 15.4” MacBook
Pro running macOS Sierra 10.12.6 and equipped with a 60
Hz Retina 2880⇥1800 display and integrated 1536MB Intel
Iris Pro 5200. The experimental software was implemented in
C++, using the Qt framework. Ten participants (mean age 31,
3 women) participated in the data collection.

Comparing prediction performances
Offline analysis methodology
By default, we consider the collected points as points with
latency. For a given collected point that occurred at t0, we
estimate its ground truth predicted value n ms in the future (that
we will call real position) by interpolating linearly between the
collected points (ti and ti+1) n ms later (Figure 4). Each value
of n represents in that case the amount of latency compensation
to be computed. We use a given prediction algorithm in order
to compute predicted points for different artificial latencies (8,
24, 40 and 56 ms). We then compare the performance of these
predictions using different pointing prediction metrics.

ti+2ti+1t0time
n ms compensation

Collected points
Real/Interpolated point
Predicted point

t0+comp

Figure 4: The ground truth compensated estimation of a given collected

point at t0 is estimated by interpolating linearly between the collected

points at ti and ti+1 with ti t0+comp ti+1

[Antoine et al. 2018]

Results

Error rate
Error rate is measured as the percentage of trials not success-
fully completed. Repeated-measures ANOVA revealed signifi-
cant effect of width on error rate (F1,11 = 9.2, p < 0.01, h2

p = 0.46;
2 mm: 6.6%, 7 mm: 3.5%). No other main effect or interaction was
found on error rate. On average the error rate is equal to 5.0%.

Movement time
Movement time is the main dependent measure and is defined
as the time taken to move from a target to the next one and
click on it. Targets marked as errors were removed from the
timing analysis.

Repeated-measures ANOVA did not reveal any significant
main effect of block but a significant block ⇥compensation
interaction (F6,66 = 2.8, p < 0.02, h2

p = 0.21) on movement time.
Pairwise comparisons show that for 0 ms of latency compensa-
tion, there is a significant decrease in movement time between
block 1 and block 3 (p = 0.03; block 1 = 1.54 s, block 3 = 1.48 s).
Considering the small learning effect, we chose to keep all the
blocks for subsequent analysis.

Repeated-measures ANOVA found a significant main effect of
artificial (F2,22 = 10.8, p < 0.001, h2

p = 0.49), compensation (F3,33 =

36.8, p < 0.001, h2
p = 0.77), distance (F1,11 = 312, p < 0.0001, h2

p =

0.97), width (F1,11 = 305.2, p < 0.0001, h2
p = 0.96) and significant

artificial ⇥compensation (F6,66 = 7.8, p < 0.001, h2
p = 0.41) on

movement time. This interaction reveals that the compensation
of latency does not affect movement time in the same way
depending on the amount of artificial latency (Figure 6).

For 0 ms artificial latency, pairwise comparisons show a sig-
nificant (p<0.001) increase of movement time between latency
compensation 50 ms and both 16.7 ms and 33.3 ms (0ms: 1.29s,
16.7ms: 1.22s, 33.3ms:1.26s, 50ms:1.37s). However no significant
difference was found between 0 ms compensation and the
other amounts of compensation. For 33.3ms artificial latency,
16.7ms and 33.3ms compensation significantly (p<0.003) im-
prove movement time compared to 0 ms compensation (0ms:
1.52s, 16.7ms: 1.38s, 33.3ms:1.36s, 50ms:1.43s). Last for 66.6 ms arti-
ficial latency, all compensations significantly (p<0.04) improve
movement time (0ms: 1.69s, 16.7ms: 1.51s, 33.3ms:1.42s, 50ms:1.52s).
To sum up, both 16.7 and 33.3 ms compensation significantly
improve performance compared to 0 ms artificial latency both
for 33.3 ms and 66.6 ms artificial latencies and no significant
difference was found for 0 ms artificial latency. 50 ms latency
compensation significantly improves performance compared
to 0 ms latency compensation only in the 66.6 ms artificial
latency condition. In the best case scenario (33.3ms latency
compensation with 66.6ms artificial latency), latency compen-
sation improves movement time by 16%.

With the values of artificial latencies and latency compensa-
tion we chose, it is interesting to compare 33.3 ms latency
compensation in the 33.3 ms artificial latency condition (1.36s)
with 0 ms latency compensation in the 0 ms artificial latency
condition (1.29s). No significant difference was found between
the two conditions. In the same way, we can compare 33.3
ms latency compensation in the 66.6 artificial latency condi-
tion(1.42s) with 0 latency compensation in the 33.3 ms artificial

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 66.633.3
Latence artificielle ajoutée (ms)

Te
m

ps
 (s

)

Niveau de compensation (ms) 0 16.7 33.3 50

Figure 6: Movement time for the different amounts of artificial latency

and latency compensation. Error bars represent 95% confidence inter-

val for the means.

latency condition (1.52s). Again no significant difference was
found between the two conditions.

We also ran a Fitts analysis to standardise our results (Figure
7). The analysis showed all r2 values above 0.98 and con-
firmed our results. For 0 artificial latency, only the 16 ms
compensation regression line is below 0 compensation and for
all other artificial latency values, the regression lines for all
compensation values are below the one for 0 compensation
which confirms the interest of TurboMouse for systems with
high latency.

Qualitative feedback
Half the participants found that the transfer function used was
not fast enough and forced participants to do larger physical
movements than they were used to do doing. As a result par-
ticipants were more likely to use higher speeds with the mouse
which were more likely to increase the impact of side-effects.
From 33.3 ms of compensation, all participants said that the
cursor was "shaking" but still "controllable" and that it got
"worse" for 50 ms of compensation. With 33.3 and 50 ms
of compensation, 3 participants reported that they explicitly
restricted the velocity of their mouse inputs motions to avoid
this side-effect. Only 2 participants noticed that the "shaking"
side effect occurred mostly when they suddenly stopped mov-
ing, and then tried to smooth their physical movements. For

0.5

1.0

1.5

2.0

3.55 4.49 5.27 6.25

M
ov

em
en

t t
im

e
(s

)

0 ms

3.55 4.49 5.27 6.25

33.3 ms

3.55 4.49 5.27 6.25

Latency compensations (ms) 0 16.7 33.3 50

66.6 ms

Figure 7: Fitts linear regressions for each amount of artificial latency

and latency compensation.

Application

66

67

Communiquer avec un périphérique

void onKeyDown(…)
{
 …
}

void onMouseMove(…)
{
 …
}

int main()
{
 while (true)
 {
 update();
 draw();
 }
}

int main()
{
 while (true)
 {
 input();
 update();
 draw();
 }
}

Polling

Gestion d’événements

