Impact of Form Factors and Input Conditions on Absolute Indirect-Touch Pointing Tasks

Jérémie Gilliot, Géry Casiez & Nicolas Roussel

LIFL & INRIA Lille University of Lille, FRANCE

	Direct	Indirect
Relative		
Absolute		

	Direct	Indirect
Relative		
Absolute		

	Direct	Indirect
Relative		
Absolute	+ directness + multitouch - precision - fatigue	

	Direct	Indirect
Relative		
Absolute	+ directness + multitouch - precision - fatigue	

Absolute indirect pointing Direct Indirect + precision + fatigue Relative - multitouch + directness + multitouch Absolute - precision - fatigue

Absolute indirect pointing Direct Indirect + precision + fatigue Relative - multitouch + directness + multitouch Absolute - precision - fatigue

Absolute indirect pointing Direct Indirect + precision + fatigue Relative - multitouch + fatigue + directness + multitouch + multitouch Absolute - precision - precision - fatigue

Absolute indirect pointing Direct Indirect + precision + fatigue Relative - multitouch + fatigue + directness + multitouch + multitouch Absolute precision - precision - fatigue

Malik et al. UIST'05

Benko et al. Gl'10

Schmidt et al. Interact'09

McCallum et al. UIST'09

Moscovich et al. Gl'06

Gustafson *et al.* UIST'11

- input form factors (size and aspect ratio)

- input form factors (size and aspect ratio)
- input conditions (ability to look at the device, ability to use both hands)

- input form factors (size and aspect ratio)
- input conditions (ability to look at the device, ability to use both hands)

 display form factors (device size and aspect ratio, target size)

Hypothesis:

Hypothesis:

1. Despite the lack of feedback, looking at the input surface would help position the index finger

Hypothesis:

1. Despite the lack of feedback, looking at the input surface would help position the index finger

2. The non-dominant hand could act as a reference frame to position the finger if users were unable to look at the device

12 participants

12 participants x 3 input conditions (1 hand, 1 hand-blinders, 2 hands Blinders)

12 participants x 3 input conditions (1 hand, 1 hand-blinders, 2 hands Blinders)

12 participants x 3 input conditions (1 hand, 1 hand-blinders, 2 hands Blinders)

12 participants x 3 input conditions (1 hand, 1 hand-blinders, 2 hands Blinders)

12 participants x 3 input conditions (1 hand, 1 hand-blinders, 2 handsBlinders) x 2 device size (iPod, iPad)

- 12 participants
- x 3 input conditions (1 hand, 1 hand-blinders, 2 hands Blinders)
- x 2 device size (iPod, iPad)
- x 3 blocks

- 12 participants
- x 3 input conditions (1 hand, 1 hand-blinders, 2 hands Blinders)
- x 2 device size (iPod, iPad)
- x 3 blocks
- x 3 target size (10, 20, 40 mm)
- 12 participants
- x 3 input conditions (1 hand, 1 hand-blinders, 2 hands Blinders)
- x 2 device size (iPod, iPad)
- x 3 blocks
- x 3 target size (10, 20, 40 mm)
- x 9 target position

- 12 participants
- x 3 input conditions (1 hand, 1 hand-blinders, 2 hands Blinders)
- x 2 device size (iPod, iPad)
- x 3 blocks
- x 3 target size (10, 20, 40 mm)
- x 9 target position
- x 3 repetitions
- = 17,496 total trials

10

9 25

Minimum target size in motor space

Minimal target size in motor space participants can select on first attempt with a 95% probability

Minimum target size in motor space

Minimal target size in motor space participants can select on first attempt with a 95% probability

INPUT CONDITION		1Hand Blinders	2Hand Blinders	1Hand
DEVICE SIZE	SMALL	22.3	23.2	16.8
	LARGE	45.2	41.3	27.8

Minimum target size in motor space

Minimal target size in motor space participants can select on first attempt with a 95% probability

INPUT CONDITION		1Hand Blinders	2Hand Blinders	1Hand
DEVICE SIZE	SMALL	22.3	23.2	16.8
	LARGE	45.2	41.3	27.8

Hypothesis:

Hypothesis:

1. The size of targets relative to that of the display would have no impact on performance

Hypothesis:

- 1. The size of targets relative to that of the display would have no impact on performance
- 2. Similar input and output aspect ratios would lead to better performance

12 participants

12 participants x 3 workspace height (74, 147, 294 mm)

12 participants x 3 workspace height (74, 147, 294 mm) x 3 aspect ratio (4:3, 16:9, 32:10)

12 participants x 3 workspace height (74, 147, 294 mm) x 3 aspect ratio (4:3, 16:9, 32:10) x 3 blocks

- 12 participants
- x 3 workspace height (74, 147, 294 mm)
- x 3 aspect ratio (4:3, 16:9, 32:10)
- x 3 blocks
- x 2 target size (20 and 40 mm)

- 12 participants
- x 3 workspace height (74, 147, 294 mm)
- x 3 aspect ratio (4:3, 16:9, 32:10)
- x 3 blocks
- x 2 target size (20 and 40 mm)
- x 4 target position

- 12 participants
- x 3 workspace height (74, 147, 294 mm)
- x 3 aspect ratio (4:3, 16:9, 32:10)
- x 3 blocks
- x 2 target size (20 and 40 mm)
- x 4 target position
- x 3 repetitions

- 12 participants
- x 3 workspace height (74, 147, 294 mm)
- x 3 aspect ratio (4:3, 16:9, 32:10)
- x 3 blocks
- x 2 target size (20 and 40 mm)
- x 4 target position
- x 3 repetitions
- = 7,776 total trials

Targeting error and aspect ratio

Targeting error and aspect ratio

Targeting error and scale

Wм	WORKSPACE HEIGHT		Hs	Нм	HL
	ASPECT RATIO	Rм	20×20	10×10	5×5
		Rl	15×20	17.5×10	3.7×5
		RXL	8.3×20	4.2×10	2.1×5
	WORKSPACE HEIGHT				
WL	WORKSPACE HEI	GHT	Hs	Нм	HL
WL	WORKSPACE HEI	GHT RM	Hs 40×40	Нм 20×20	HL 10×10
WL	WORKSPACE HEI ASPECT RATIO	GHT RM RL	Hs 40×40 30×40	Нм 20×20 15×20	HL 10×10 7.5×10
Targeting error and scale

Wм	WORKSPACE HEIGHT		Hs	Нм	HL
		Rм	20×20	10×10	5×5
	ASPECT RATIO	RL	15 29.9	mm 10	3.7×5
		RXL	8.3×20	4.2×10	2.1×5
WL	WORKSPACE HEI	GHT	Hs	Нм	HL
WL	WORKSPACE HEI	GHT RM	Hs 40×40	Нм 2 <u>0×20</u>	HL 10×10
WL	WORKSPACE HEI ASPECT RATIO	GHT RM RL	Hs 40×40 30×40	Нм 20×20 1 31.2	HL 10×10 mm <10

Wal	l dis	play	

Wal	l dis	play	

Wal	l dis	play	

Wal	l dis	play	

Looking at the input surface, even if nothing is displayed on it helps => the boundaries of the surface should be clearly distinguishable

- Looking at the input surface, even if nothing is displayed on it helps
 => the boundaries of the surface should be clearly distinguishable
- 2. Designers should take the **handedness** of the users into account for all absolute indirect-touch pointing tasks.

- Looking at the input surface, even if nothing is displayed on it helps
 => the boundaries of the surface should be clearly distinguishable
- 2. Designers should take the **handedness** of the users into account for all absolute indirect-touch pointing tasks.
- 3. The display scale does not matter, but **input and output aspect ratios do**.

- 1. Looking at the input surface, even if nothing is displayed on it helps => the boundaries of the surface should be clearly distinguishable
- 2. Designers should take the **handedness** of the users into account for all absolute indirect-touch pointing tasks.
- 3. The display scale does not matter, but **input and output** aspect ratios do.
- 4. Pay attention to the minimum target size in motor space and use it to check whether the on-screen interactors can be reliably acquired.