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Abstract. Multi-touch displays have become commonplace over recent years. 
Numerous applications take advantage of this to support interactions that build 
on users' knowledge and correspond to daily practices within the real world. 3D 
applications are also becoming more common on these platforms, but the multi-
touch techniques for 3D operations often lag behind 2D ones in terms of intui-
tiveness and ease of use. Intuitive navigation techniques are particularly needed 
to make multi-touch 3D applications more useful, and systematic approaches 
are direly needed to inform their design: existing techniques are still too often 
designed in ad-hoc ways. In this paper, we propose a methodology based on 
cognitive principles to address this problem. The methodology combines stan-
dard user-centered design practices with optical flow analysis to determine the 
mappings between navigation controls and multi-touch input. It was used to de-
sign the navigation technique of a specific application. This technique proved to 
be more efficient and preferred by users when compared to existing ones, which 
provides a first validation of the approach. 
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1 Introduction 

Multi-touch displays have become commonplace over the recent years. Smartphones, 
tablets, interactive kiosks and systems of other sorts can now detect and react to the 
presence of two or more contact points on the screen surface. Numerous applications 
take advantage of this to support reality-based interactions [13] that build on users' 
knowledge and correspond to daily practices within the real world. 3D applications 
are also becoming more common on these platforms, including games, virtual tours, 
and CAD applications for both specific, e.g. interior design, and general purposes. But 
the multi-touch techniques for 3D operations often lag behind the 2D ones in terms of 
intuitiveness and ease of use. Navigation particularly seems to be the Achilles heel of 
multi-touch 3D applications. Existing techniques are still too often designed in ad-hoc 
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ways. Intuitive techniques are direly needed to make the applications more useful, and 
systematic approaches direly needed to inform their design. 

The Merriam-Webster Dictionary defines intuitive as “attaining to direct know-
ledge or cognition without evident rational thought and inference”. Based on an  
extensive review of the relevant literature, Ingram et al. also identify direct manipula-
tion as the most influential factor determining the intuitiveness of multi-touch  
systems [10]. Direct manipulation is commonly supported by 2D multi-touch applica-
tions, due to the trivial mapping between 2D tasks and the multi-touch input space. 
However, finding a direct mapping between 3D tasks and this 2D input space is much 
more difficult. To clarify the requirements for intuitive 3D navigation techniques, we 
propose to turn first to cognitive accounts of the feeling of directness. 

Hutchins et al. identify two underlying phenomena that give rise to this feeling: a 
small cognitive distance, and direct engagement [9]. The cognitive distance is the one 
“between the user’s intentions and the facilities provided by the machine”. It encom-
passes the semantic distance, concerned with the meaning of available interactions, 
and the articulatory one, concerned about their form. For the semantic distance to be 
small, the system should provide users with adequate commands to concisely express 
what they want to do. For the articulatory distance to be small, the system should 
provide an adequate mapping between user actions and the commands. This mapping 
should not be arbitrary, but should rather favor similarities between user action and 
command meaning. Lastly, for direct engagement, the system should provide conti-
nuous representations of the objects of interest and promptly react to user actions on 
them. Ultimately, the degree of directness relates to the one to which the system sup-
ports skill-based rather than rule-or knowledge-based behaviors [22]. 

Navigation concerns viewpoint control and is the aggregate of wayfinding (cogni-
tive planning of one's route), travel (the motor aspects) and inspection (for particular 
proximal views of objects). The importance of each sub-task depends on the consi-
dered application. We did not consider wayfinding sub-tasks in this work. We rather 
focused on multi-touch support for traveling and, to a lesser extent, inspection. Travel 
techniques support the motor aspects of 3D navigation, allowing users to control the 
position and orientation of their viewpoint [2]. Viewpoints are typically modeled 
using seven parameters: the camera's field of view, three Cartesian coordinates (its 
position) and three Euler angles (its orientation). Controlling these parameters re-
quires a rich command vocabulary because of their number and the different ways to 
use them. Turning around is pretty straightforward, for example, as it requires the 
control of a single viewpoint parameter (Figure 1, ܴ௬). Wandering around a horizontal 
space requires the control of three parameters at the same time ( ௫ܶ , ௭ܶ & ܴ௬). But 
some navigation tasks require quite a complex coordination of controls, especially 
when the desired motion is conceptually tied to other reference points. Orbiting 
around an object, for example, couples planar circular motions with a rotation around 
an orthogonal axis, both centered on the object ( ௬ܶ, ௭ܶ  & ܴ௫ for ௫ܱ; ௭ܶ , ௫ܶ  & ܴ௬ for ௬ܱ). Temporary transformations can also be useful, such as adjusting the field of view 
 of the camera to remotely inspect a distant place or have a closer look at a (ܸܱܨ)
nearby detail. 
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Fig. 1. Typical viewpoint controls: dolly, sidestep and fly ( ௭ܶ, ௫ܶ and  ௬ܶ), tilt, pan and roll 
(ܴ௫, ܴ௬ and  ܴ௭), zoom (ܸܱܨ) and orbit ( ௫ܱ and  ௬ܱ) 

To reduce semantic distance, multi-touch navigation techniques should support not 
only elementary viewpoint controls, but also coordinated ones, including the complex 
coordination required by externally referenced tasks and temporary ones. To reduce 
articulatory distance, they should be based on a mapping favoring similarities be-
tween user gestures and commands meaning. To support direct engagement, they 
should provide a close and continuous visual-motor loop. In this paper, we present a 
methodology for designing multi-touch 3D navigation techniques that meet all these 
requirements. After discussing related work, we describe our methodology and ex-
plain how it was used to design the navigation technique of a particular application. 
We then provide some implementation details for that application. We finally report 
on a study that compared this technique with existing ones and provides a first valida-
tion of the approach. 

2 Related Work 

Navigation in virtual 3D worlds has been extensively studied in immersive and desk-
top environments. Bowman et al. [2] and Christie et al. [4] provide detailed reviews of 
the relevant concepts and techniques in these contexts, many of which are also rele-
vant to multi-touch environments. Navigation techniques map user actions on one or 
more input devices to viewpoint controls such as those of Figure 1. Theoretically, a 
technique could allow users to operate all controls at once. However, it is rarely the 
case since few input devices (or device combinations) have enough degrees of free-
dom, and their control properties seldom match the perceptual structure of the naviga-
tion tasks [12]. Viewpoint controls thus tend to be organized in groups, which can 
raise issues about consistency and mode switching. The following review focuses on 
input-to-control mappings for multi-touch systems, but also discusses pen or mouse-
based navigation techniques that could easily be adapted to these systems. 

2.1 Basic Viewpoint Control 

Different techniques have been proposed to freely and precisely control the view-
point. These are typically used when navigation is a primary task of the application, 
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one without which it would not be the same. They most often provide only elementary 
input-to-control mappings to move and orient the viewpoint. 

Games using a first-person perspective are probably the most popular 3D applica-
tions supporting this kind of navigation on multi-touch platforms. A common practice 
is to use one or two on-screen joysticks for moving and turning (ܴ௬, ௭ܶ or  ௫ܶ , ௭ܶ ൅ܴ௬, ܴ௫). Virtual joysticks make control grouping explicit and make it possible to use 
non-linear transfer functions for a trade-off between speed and control. They can also 
be complemented by buttons, sliders or other widgets for discrete or continuous ac-
tions on other controls (e.g. ܸܱܨ, ௬ܶ). Coordinating interactions on multiple screen 
locations is not necessarily easy, though, especially without haptic feedback. Com-
pound controls such as orbiting are thus usually difficult in these settings. Instead of 
spreading controls across the screen, some techniques combine them using modes. In 
the RealMyst1 game, for example, touching the screen and moving horizontally or 
vertically changes the orientation of the viewpoint while holding still moves forward. 
Such an approach is of course only practical for a small number of modes. 

Multi-touch devices can be used to interact with a 3D scene displayed elsewhere. 
The ability to use a different view of the scene, a different orientation, or a different 
physical shape offers new interesting possibilities. The Finger Walking in Place 
(FWIP) technique allows to navigate in a CAVE by mimicking walking movements 
with fingers on a horizontal multi-touch device [14, 15]: repeated single-touch sliding 
gestures move the viewpoint forward or backward ( ௭ܶ), while multi-touch turn ges-
tures rotate it left or right (ܴ௬). The Follow my Finger (FmF) technique uses a hori-
zontal multi-touch table to navigate in a scene shown on a vertical screen [1]. The 
table shows a 2D bird's-eye view of the scene with a camera icon that users can move 
( ௭ܶ , ௫ܶ) and orient (ܴ௬) using the 2D Rotate'N Translate technique [16]. The Cub-
Tile [24] takes the idea of aligning the perceptual structure of the tasks with the input 
device in the opposite direction. This device combines 5 multi-touch surfaces ar-
ranged as a cube so that gestures performed on multiples sides at the same time define 
a 3D gesture that can be used for 3D interaction. Although designed for object mani-
pulation, the CubTile may well be suitable for navigation tasks. 

2.2 Viewpoint Control Facilitation 

It might well be the case that the 3D environment in which a user wants to navigate is 
extremely large [19]. Or the user might be willing to quickly get a glimpse of the 
scene from different perspectives. Or (s)he might be engaged in repeated tasks requir-
ing frequent switches between two or more viewpoints. In these situations, navigation 
is just a mean and not an end. One wants to transition between viewpoints but does 
not necessarily care about all the details of the transition. Even with sophisticated 
transfer functions, basic viewpoint controls are not enough: one needs faster and inte-
grated techniques to move and orient the viewpoint. 

The Point Of Interest (POI) desktop technique was precisely designed for rapid 
controlled movement through a 3D space [17]. After selecting a POI with the mouse, 
                                                           
1  http://www.cyanworlds.com/iOS_realMyst/ 
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it allows to quickly move there by simply pressing a key, the system taking care of the 
transition with an animation adjusting the viewpoint position (using a logarithmic 
function of the remaining distance) and reorienting it to face the POI. UniCam [25] is 
a mouse or stylus-based system that uses simple gesture recognition to facilitate a 
variety of complex navigation tasks including orbiting around specific points, click-
to-focus on points and edges, and region zooming. Navidget [8] expands on these 
ideas by allowing the user to not only specify a point of interest but also control the 
final position and orientation of the viewpoint, rather than inferring them. The system 
uses single-stroke symbolic gestures and animations in constant time to combine tra-
vel and inspection with the ability to go back to a previous viewpoint configuration. 

A difficulty when trying to control the viewpoint without any external representa-
tion (as in FmF) is that by definition, it cannot be seen. As a consequence, it can only 
be indirectly manipulated. There is, however, a way to change this: by giving users 
the impression they can grab the whole scene and manipulate it. Instead of indirectly 
moving the viewpoint to a particular place, for example, they would thus manipulate 
the whole scene so that the place comes into the viewpoint. To support this, one needs 
to make sure that any object touched by a finger remains under it as long as it stays in 
contact with the surface. This approach has its roots in Gleicher & Witkin's early 
work on through-the-lens camera control [7] and recently received renewed attention 
after Reisman et al. adapted it to the interactive manipulation of 3D content on 2D 
multi-touch systems under the name screen-space [23]. The DabR system [5] uses it 
in a strict way to support the direct manipulation of basic viewpoint controls, for ex-
ample. A drawback of the screen-space approach is that its output (viewpoint trans-
formation) is not always predictable due to ambiguities in potential mappings between 
points in screen space and the 3D scene. To avoid these ambiguities, the Drag'n Go 
technique [20] assigns viewpoint controls to input gestures based on kinematic cor-
respondence, i.e. the similarity of the input and output paths [3]. 

Fu et al. assembled an impressive set of viewpoint control facilitation techniques 
more or less inspired by the above ones for exploring large-scale 3D astrophysical 
simulations [6]. Yet this assemblage seems quite ad-hoc. The fact is that designers 
have little information to rely on when creating a new application.  

2.3 A Lack of Systematic Approach 

Intuitive navigation techniques are needed to make multi-touch 3D applications use-
ful. Different techniques have been proposed to support basic viewpoint controls and 
facilitate more complex ones. But comparing these techniques is hard, considering the 
little information available on their design process and performances. Although  
the initial design motivation is usually clearly stated in the corresponding papers, the 
design rationale is largely undocumented. Which decisions were made during  
the design process, and why, for example? How did the authors come up with the  
proposed mapping between user actions and viewpoint controls? Why did they decide 
to group them this way? Without these explanations, one might wonder if there was 
actually a design process. The authors of UniCam somehow acknowledge this prob-
lem: “Our choice of how to gesturally map the 3 DOFs of camera translation to 2D 
mouse movements involves some apparently arbitrary choices. (...) In lieu of an  
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explanation, we note that from our experience with gestural interaction, the most relia-
ble technique for insuring usable interactions is through empirical evaluations.” [25]. 

We collectively need more explanations on the design of these techniques. Evalua-
tions are also important and need to be properly reported. As illustrated by Table 1, 
few of the techniques we reviewed have been evaluated and even less have been 
compared to others. We definitely need more comparative evaluations. Without ex-
planations of what is being done and comparisons with existing solutions, there can 
be no progress in the understanding of the problems and their solutions. Systematic 
approaches are direly needed to inform the design of new techniques. 

Table 1. Summary of the characteristics of the most relevant techniques and systems discussed 
in this section. Rows prefixed with a star correspond to those specifically designed for multi-
touch interaction.  

Technique  
or system 

Design  
motivation 

Reported 
Evaluation 

*FWIP [14,15] walking metaphor comparative (vs. joystick) & usability testing 

*FmF [1] 2D directness None 

 POI [17] speed and control none 

 UniCam [25] integrated suite empirical? 

 Navidget [8] ease of use and control comparative (vs. standard 3D viewer) 

*Screen-space [23] 3D directness none 

*DabR [5] 3D directness none 

*Drag'n Go [20] multi-scale navigation comparative (vs. POI, DabR, keyboard+mouse) 

*Fu et al [6] large scale navigation usability testing 

3 Design Methodology 

Considering a set of application-specific tasks, how can one map the associated view-
point controls to the input handles provided by a multi-touch system? In this section, 
we report on the design of such a mapping for a particular application. Although the 
resulting technique is specific to that application, we believe our design methodology  
should be of general interest. The application we worked on is one for reviewing  
interior designs (Figure 2) that typically runs on computers equipped with a multi-
touch screen. Our goal was to design an intuitive navigation technique for this appli-
cation, as defined earlier, i.e. one with reduced semantic and articulatory distances 
and a close and continuous visual-motor loop. In the following, we explain how stan-
dard user-centered practices and optical flow analysis helped us identify application 
controls and input handles and define the mappings between them. 

3.1 Identifying Navigation Tasks and Associated Controls 

A way to reduce the semantic distance by design is to work with users to define the 
navigation commands from their perspective, rather than the application developers'. 
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Developers usually think of viewpoint control in terms of parametric modifications of 
the camera model, as these are ultimately the only controls available. But they typical-
ly have little insight into the ways these should be grouped. Users, on the other hand, 
typically think in terms of high-level situated tasks (i.e. context-specific) that can help 
structure the design space. To provide users with adequate commands to concisely 
express what they want to do, application designers must identify these tasks. 

 

 

Fig. 2. Sample interior design. Reviewing such a scene requires the ability to quickly navigate 
through it (including moving from one floor to the other), to orient the viewpoint in a precise 
way (e.g. to check the view from the couch) and to inspect particular objects (e.g. the ones on 
the table). 

Based on our specific application context (Figure 2), the related work we previous-
ly described and interviews of potential users, we decided to focus on the following 
tasks, in decreasing order of importance: 

• Move around - Users need to be able to move around the virtual interior the way 
they do in the real world, i.e. mostly by moving forward or backward ( ௭ܶ) while 
possibly turning left or right (ܴ௬ ). Although commonly supported by video 
games, sidestepping (or strafing, ௫ܶ) is rarely used in real world situations and 
thus of lesser importance. Altitude control ( ௬ܶ) is also pretty limited in the real 
world without assistance, and thus also of lesser importance. 

• Look around - Adjusting the viewpoint orientation is another important task that 
must be supported by the considered application. Users need to be able to look 
left and right (ܴ௬) as well as up and down (ܴ௫). The third rotation of the camera 
(ܴ௭) does not seem necessary as people have limited control on it in the real 
world and it does not change what they see but only how they see it. 

• Circle around ܲ - When focusing on a particular object or area, users need to be 
able to look at it from different sides. This is typically achieved by orbiting 
around a previously specified point (ܲ) in the horizontal plane ( ௬ܱ). 

• Scrutinize ܲ - Looking at a particular point of interest (ܲ) from different sides 
might not be enough. One might want to have a closer look at it. In real-life, one 
can bend over or use optical tools such as a magnifying glass or binoculars to 
temporarily modify one's field of view (ܸܱܨ). 
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Table 2 summarizes the viewpoint controls of Figure 1 associated with the above 
four tasks to be supported by our particular application. Having identified the view-
point model's degrees of freedom we want to control and taken a few first steps into 
their organization, we must now turn to the input device (the multi-touch screen) and 
examine the handles it provides for that control. 

Table 2. Relevance of viewpoint controls to high-level navigation tasks, by decreasing order of 
importance.●: relevant,◐: partially relevant, ○: not relevant. 

 Tx Ty Tx Rx Ry FOV Oy 

Move around ◐ ◐ ● ○ ● ○ ○ 

Look around ○ ○ ○ ● ● ○ ○ 

Circle around ܲ ○ ○ ○ ○ ○ ○ ● 

Scrutinize ܲ ○ ○ ○ ○ ○ ● ○ 

3.2 Identifying Input Handles 

Although some touch sensing technologies provide rich information about contact 
regions, including their shape or the applied force, most multi-touch APIs only expose 
the 2D coordinates of their centroid. One might thus think that using ݊ fingers, users 
should be able to control 2 ൈ ݊ degrees of freedom. But in reality, it is never the 
case. Multi-touch systems can't distinguish between fingers, so degrees of freedom 
cannot be univocally associated to them. The order of appearance of contacts or hit-
testing with specific on-screen areas can be used for these associations. But in the 
end, interaction will always be constrained by limited finger individuation: it is quite 
difficult to move one finger without some degree of involuntary movement at one or 
more of the others [11]. 

Instead of considering contacts individually, one can group them using different 
methods (e.g. hit-testing, proximity, hand identification) and extract from the collated 
movement information global parameters to be associated with degrees of freedom to 
control. A common practice is to consider multi-touch gestures on objects as Rotate-
Scale-Translate (RST) manipulations and to determine and characterize the principal 
transformation involved - e.g. ܴሺߙ, ,ߢሻ for a turn gesture, ܵሺܥ  ሻ for a pinch or aܥ
spread, and ܶሺݔ, -ሻ for a swipe2. Figure 3 shows a simplified view of the state maݕ
chine we used, based on this approach. The machine differentiates four interaction 
states (shown in gray): one for single-touch interaction, and three differentiating mul-
ti-touch interactions based on the first principal transformation detected. 

Having described the desirable viewpoint controls for our application (Table 2) and 
the different handles provided by a multi-touch screen, i.e. ܶሺݔ,  ሻ for single-touchݕ
interactions and ܴሺߙ, ,ߢሻ, ܵሺܥ ,ݔሻ & ܶሺܥ -ሻ for multi-touch ones, we will now exݕ
amine the mappings between them. 

 

                                                           
2  The parameters associated to each transformation will be explained in the next section. 
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Table 3 summarizes the compatibility between gesture flows and optical flows us-
ing a three-level scale. Starting from this table, we applied the following heuristics to 
choose between alternative mappings: 

• As MT-ܴሺߙ,  .ሻ is the most compatible gesture with ௬ܱ, we decided to map the twoܥ
• ௭ܶ  and ܸܱܨ are compatible with the same gestures, MT-ܵሺߢ, ,ݔሻ and ST-ܶሺܥ  .ሻݕ

Since ௭ܶ is one of the most important controls, we wanted to keep it as simple as 
possible and thus preferred a single-touch gesture for it. Moving forward/backward 
seemed better matched with a vertical movement rather than a horizontal one, so 
we chose ST-ܶሺ. , ,ߢwe chose MT-ܵሺ ,ܸܱܨ ሻ. Forݕ  .ሻܥ

• For ST-ܶሺݔ, . ሻ, we were left with ௫ܶ, ܴ௬ and ௬ܱ, the first two being more impor-
tant than the third one. We decided to map ST-ܶሺݔ, . ሻ to ܴ௬ so that single-touch 
interaction would support both Move around (with ௭ܶ and ܴ௬) and Look around 
(with ܴ௬). 

• For MT-ܶሺ. , ሻ, we were left with ௬ܶݕ  and ܴ௫ . We chose the latter, as looking 
up/down was considered more important than controlling one's altitude. 

• For MT-ܶሺݔ, . ሻ, we were left with ௫ܶ and ܴ௬. Informal tests convinced us that the 
latter was preferable, considering our previous choice of ܴ௫ for MT-ܶሺ. ,  .ሻݕ

Table 3. Compatibility between gesture flows (rows) and optical flows (columns): ○ 

incompatible, ● compatible, ◐ compatible under one of the conditions below. A dot in place of ݔ 
or ݕ indicates that this component is ignored. The gray cells correspond to the chosen mapping. 

  Tx Ty Tz Rx Ry FOV Oy 
ST ܶሺݔ, . ሻ ● ○ ● ○ ◐(1) ● ◐(2) ܶሺ. , ● ● ○ ሻݕ ◐(3) ○ ● ○ 
MT ܴሺߙ, ○ ○ ○ ሻܥ ◐(4) ◐(5) ○ ● 
MT ܵሺߢ, ● ○ ○ ሻܥ ○ ○ ● ○ 
MT ܶሺݔ, . ሻ ● ○ ◐(6) ○ ◐(1) ◐(6) ◐(2) ܶሺ. , ○ ሻ ○ ● ◐(6) ◐(3)ݕ ◐(6) ○ 
(1) compatibility is inversely proportional to the 
vertical distance to the center of the screen 
(2) the point of interest ( ܲ ) must have been 
previously specified 
(3) compatibility is inversely proportional to the 
horizontal distance to the center of the screen 

 must be in the middle of a vertical border ܥ (4)
of the screen, i.e. left or right 
-must be in the middle of a horizontal bor ܥ (5)
der of the screen, i.e. top or bottom 
(6) contacts must be “close enough”, i.e. within a 
certain radius, so they can be reduced to single-
touch interaction 

4 Implementation: The Move and Look Technique 

A close look at Table 2 and the chosen mapping in Table 3 shows that ST-ܶሺݔ,  ሻݕ
corresponds to Move around while MT-ܴሺߙ, ,ߢሻ corresponds to Circle around, MT-ܵሺܥ ,ݔሻ to Scrutinize and MT-ܶሺܥ  ሻ to Look around. As illustrated by Figure 5, eachݕ
of our 4 high-level navigation tasks can thus be associated to an interaction state of 
the machine shown in Figure 3. This section details the implementation of the result-
ing navigation technique, which we called Move&Look. 
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Fig. 5. The Move&Look technique, instanciated from Figure 3 

4.1 Single-Touch Interaction: Move Around 

When a single contact is detected, subsequent ܶሺݔ,  ሻ  finger movements are mappedݕ
to ܴ௬, ௭ܶ  camera movements to support the move around task. When touch is de-
tected, a ray is casted in the 3D scene from the camera center through the contact 
point in the camera plane. The intersection with the scene (ܲ) defines the point of 
interest, and the ray a path towards it. Progression along the path is controlled through 
finger movements in the following way: 

• Lateral movements (ܶሺݔ, . ሻ) do not affect the camera position. Proximal finger 
movements translate the camera towards ܲ  and distal movements translate it 
backwards along the path (ܶሺ. ,  .(ሻݕ

• The distance between the initial contact point and the bottom of the display is 
mapped to the entire path length: the destination is reached when the finger reaches 
the bottom of the display.  

• Distal finger movements past the initial contact point (i.e. above it) continue mov-
ing the camera backwards along the path. For consistency, the scale factor remains 
the same as when closing in on ܲ. 

Users can turn the camera left and right ሺܴ௬) through lateral finger movements. 
The camera orientation is computed so as to always keep the projection of ܲ under 
the finger. ܴ௬ is computed either analytically [7] or numerically [23] to minimize the 
distance between the previous projection of  ܲ and the current finger position (we 
used the minimizer from ALGLIB to solve the different minimization problems). 

4.2 Multi-touch Interaction Switch: RST Classifier 

When multiple contacts are detected, their movement is analyzed to determine wheth-
er the state machine should switch to circle around, scrutinize or look around. The 
movement of the ݊ contact points is interpreted as a rigid transformation combining a 
rotation ܴሺߙ, ,ߢሻ, an homogeneous scaling ܵሺܥ ,ݔሻ, and a translation ܶሺܥ  ሻ. The initialݕ
position of the contact points is noted ݎ௜ and their current position ܿ௜. The ܴ, ܵ and ܶ 
transformations correspond to the minimization of the cost function ܨ  defined by 
Equation 1. ܶሺݔ,  ሻ is first computed from the centroids of the initial set of contactݕ
points (ܥ௜ሻ and the current one (ܥ௖ሻ according to equations 2, 3 and 4. The rotation 
angle ߙ is the one that minimizes the cost function of Equation 5 and is computed  
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using Equation 6 where ܿ݋ ൌ ܿ௜ െ ݋ݎ ௜ andܥ ൌ ௜ݎ െ -௖. The scale factor κ is simiܥ
larly the one that minimizes the cost function of Equation 7 and is computed using 
Equation 8 where ܿݎ ൌ ܴെ1ሺߙሻ. ܿ: 
,ݔሺܨ  ,ݕ ,ߙ ሻߢ ൌ ෍ ԡܶሺݔ, ௜ݎሻߢሻܵሺߙሻܴሺݕ െ ܿ௜ԡ଴ஸ௜ஸ௡  ሺ1ሻ ܥ௜ ൌ 1݊ ෍ ௜଴ஸ௜ஸ௡ݎ  ሺ2ሻ 

௖ܥ = 
1݊ ෍ c୧଴ஸ௜ஸ௡  ሺ3ሻ ܶሺݔ, ሻݕ ௖ܥ = െ ሻߙሺܩ ௜ ሺ4ሻܥ = ෍ ԡܴሺߙሻሺݎ௜ െ ௜ሻܥ െ ሺܿ௜ െ ௖ሻԡ଴ஸ௜ஸ௡ܥ  ሺ5ሻ 

ߙ = atan 2 ൭െ ෍ ௬݋ݎ௫݋ܿ െ ௫଴ஸ௜ஸ௡݋ݎ௬݋ܿ , ෍ ௬݋ݎ௬݋ܿ ൅ ௫଴ஸ௜ஸ௡݋ݎ௫݋ܿ ൱ ሺ6ሻ 

ሻߢሺܪ = ෍ ԡܵሺߢሻ݋ݎ െ ܴିଵሺߙሻܿ݋ԡ଴ஸ௜ஸ௡  ሺ7ሻ ߢ = 
௫ଶݎܿ ൅ ௫݋ݎ௫ݎ௬ଶܿݎܿ ൅  ௬ ሺ8ሻ݋ݎ௬ݎܿ

The only rotations considered in these equations are those centered on the centroid 
of the contact points. Although we perceive it as an elementary rotation, moving one’s 
index finger around one’s thumb while keeping this one steady will thus be inter-
preted as a combination of a centroid-centered rotation and a translation. To tackle 
this problem, we weight all contact positions by the inverse of their traveled distance 
when computing ܥ, the center of both the rotation ܴሺߙ, -ሻ and the homogeneous scalܥ
ing ܵሺߢ, .ሻܥ ܶሺݔ,  ሻ is also adjusted by removing the displacement possibly introducedݕ
by ܴሺߙ,  .ሻܥ

The ݔ, ,ݕ ,ܥ  parameters resulting from the above computations are used ߢ and  ߙ
to determine the prominent gesture among Rotate, Swipe and Pinch. Our classifier 
considers one model ܯሺݐሻ for each gesture type and returns the one that better fits 
the observations (highest ܴଶ value). The models map the initial configuration ݎ௜ to 
an estimated state ܿప෥ (Equation 9). The estimated error (the residual sum of squares) 
and the coefficient of determination ܴଶ are then computed using Equations 10, 11 
and 12.  

ܿప෥ = ܯሺݐሻ. ௜ ሺ9ሻ ܴଶݎ ൌ 1 െ ܵܵ௥௘௦ܵ ௧ܵ௢௧  ሺ10ሻ 

ܵܵ௥௘௦ ൌ ෍ ԡܿ݅ െ ܿప෥ԡଶ଴ஸ௜ஸ௡  ሺ11ሻ ܵ ௧ܵ௢௧ ൌ ෍ ԡ݅ݎ െ ܿ݅ԡଶ଴ஸ௜ஸ௡  ሺ12ሻ 
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Our classifying method is similar to the GestureMatching method used by Nacenta 
et al. [21], but instead of classifying the combined contribution of Rotate, Swipe and 
Pinch gestures, ours allows to classify the contribution of individual gesture types. 
Our method requires enough information to properly work. The classifier is thus 
enabled only when the summed distance covered by the contact points is beyond a 
given threshold. Based on preliminary tests, we found that a value of 10 pixels on a 
90PPI display (around 2.8 mm) provides a good trade-off between latency and suc-
cess rate, which is in agreement with other thresholds reported in the literature for 
similar applications [25]. 

4.3 Multi-touch Gestures: Circle Around, Look Around and Scrutinize 

When the classifier detects a prominent Rotate gesture, the technique enters the circle 
around state of Figure 5 until all contacts are lost.  ܴሺߙ,  ሻ provides the pivot point toܥ
rotate the scene and the angle of rotation (the center of the 3D rotation is computed 
from the projection of ܥ in the 3D scene). 

When a Swipe gesture is detected, the technique enters the look-around state until 
all contacts are lost. ܶሺݔ, ,ሻ is then used to rotate the camera ሺܴ௫ݕ ܴ௬) in a way simi-
lar to move around, but with two degrees of freedom instead of one. 

When a Pinch gesture is detected, the technique enters the scrutinize state until all 
contacts are lost. The scale factor of ܵሺߢ,  .of the camera ܸܱܨ ሻ is used to adjust theܥ
To ensure smooth camera movements, its look-at point remains fixed while contacts 
are moving. The ܸܱܨ is restored to its initial value when all contacts are lost. This 
state further supports remote inspection by using ܶሺݔ, ሻݕ  to rotate the camera 
(ܴ௫, ܴ௬), as in the look-around state. 

5 Experiment 

Our main motivation in this experiment was to assess our design choices by compar-
ing Move&Look to other techniques from the literature (Screen-space [23], DabR [5] 
and Drag'n Go [20]) or available in commercial products (Virtual joysticks and the 
RealMyst technique described above), most of which have never been evaluated nor 
compared.  

5.1 Task 

Informal user testing with Move&Look suggested the technique was particularly effi-
cient for interior designs mainly consisting of flat orthogonal surfaces. Encouraged by 
this, we wanted to assess the effectiveness of the technique in a more demanding en-
vironment. The task we chose consisted in collecting spheres placed inside boxes in 
an outdoor environment, and dropping them in a fountain at the center of the scene 
(Figure 6). To provide a fair comparison between multi-scale navigation techniques 
(Drag’n Go and Move&Look) and the others and focus on the evaluation of camera 
movements, the boxes were not positioned far away from each other but close to the 
central drop zone.  

Participants had to find the boxes in the scene. For each box, they had to position 
the camera in front of its only open face to pick up the sphere it contained. A sphere 
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would turn from red to green when the camera was close enough to indicate one could 
touch it to pick it up. Participants could carry only one sphere at a time, and it was 
automatically dropped once in the drop zone. Collision detection prevented partici-
pants from moving through objects, and a trial was considered as fully completed 
after all the spheres had been dropped. Participants were instructed to perform this as 
quickly as possible. They could ask the experimenter to reset the camera to its initial 
position or withdraw a trial if they felt unable to complete it. They were not encour-
aged to do so, however. The experimenter rather encouraged them to finish a trial if 
he felt they could succeed. 

 

Fig. 6. Left: overview of the 3D environment used in the experiment. Right: detailed view 
showing a box containing a sphere to pick up and drop in the fountain. 

5.2 Participants 

Twelve unpaid male participants with a mean age of 35 (SD=14) served in the expe-
riment. Five of them used a computer on a daily basis, played 3D video games and 
were familiar with touch-screens through mobile phones or tablets. Seven of them had 
a low experience with video games and were novice with touch interfaces.  

5.3 Apparatus, Design and Procedure 

Participants were seated in front of a 22” 3M multi-touch screen orientated at an angle 
of about 70° from a horizontal desk. The experiment was implemented using Unity 
3.53. A repeated measures within-subjects design was used. The independent variable 
was the interaction technique (TECH) with six levels: DabR, Screen-space, Drag’n 
Go, RealMyst (a custom implementation of the RealMyst technique), Virtual joys-
ticks (a standard combination of two Unity virtual joysticks displayed at fixed posi-
tions) and Move&Look. A trial consisted in collecting 4 spheres and each technique 
was evaluated with 3 successive trials (TRIAL). In summary the experimental design 
was: 12 participants ൈ 6 TECH ൈ 3 TRIAL = 212 total trials. 

The presentation order for TECH was counter-balanced across participants using a 
balanced Latin Square design. To favor expert usage and a fair comparison between 
techniques, each was first introduced by the experimenter with a demo and then a 
                                                           
3  http://unity3d.com/unity/whats-new/unity-3.5 
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training session. Participants could also use a cheat sheet throughout the experiment. 
After each technique, participants filled a questionnaire inspired by the Nasa TLX test 
and at the end of the experiment, they were asked to rank the techniques and give 
additional feedback.  

5.4 Results 

The dependent variables were the completion time, the number of give-ups and cam-
era resets, and the qualitative results. 

Numbers of Give-Ups and Camera Resets — 25% of trials were aborted for 
Screen-space, 17% for RealMyst, 8% for Virtual joysticks and 0% for Drag’n Go, 
DabR and Move&Look. The camera was reseted in 66% of all trials for Screen-
space, 14%  for Virtual joysticks, 11%  for RealMyst, 3%  for DabR and 
Move&Look, and 0% for Drag’n Go. 

Task Completion Time — Task completion time is defined as the time needed to 
successfully collect the four spheres and drop them in the fountain. Trials where par-
ticipants gave up were removed for the analysis. Trials at least three standard devia-
tions away from the mean for each TECH condition were considered as outliers and 
also removed. A repeated measures ANOVA showed a significant effect of TECH 
ହ,ହହܨ) ൌ 9.9, ݌ ൏ 0.001). Subsequent pairwise comparison showed significant differ-
ences (݌ ൏ 0.005) between Drag’n Go and Screen-space, Drag’n Go and RealMyst, 
Move&Look and Screen-space, and Move&Look and RealMyst. No significant dif-
ference was found between Drag’n Go and Move&Look. Completion times were 97ݏ 
for DabR, 184ݏ for Screen-space, 60ݏ for Drag’n Go, 117ݏ  for RealMyst, 111ݏ 
for Virtual joysticks and 72ݏ for Move&Look. 

User Ranking and Questionnaire — The participants ranked the techniques in 
decreasing order of preference. Overall, Move&Look came first (10 participants 
ranked it first and 2 ranked it second) followed by Drag’n Go, DabR, Virtual joys-
ticks, RealMyst and Screen-space. The participants who ranked Move&Look first 
explained it nicely complements Drag’n Go as it allows to control more degrees of 
freedom while keeping the navigation intuitive: it does not require focusing on the 
gestures to execute nor does it require planning a trajectory in the scene to reach a 
target. Screen-space was ranked last considering its lack of intuitiveness: in spite of 
the frequent use of the cheat sheet the participants did not understand how to effec-
tively use the technique to navigate the way they wanted (we believe the important 
semantic distance explains this gap between users’ intentions and the system’s beha-
viours). These subjective results are in agreement with the quantitative results found 
for completion time and the numbers of give-ups up and camera resets.  

After each technique, the participants answered questions related to the following 
six criteria on a 5 point Likert scale: mental demand, physical demand, performance, 
effort, frustration and satisfaction. The questions asked were similar to the ones avail-
able in the Nasa TLX test. We ran a Friedman analysis with Bonferroni-corrected 
Wilcoxon post-hoc analyses. This analysis shows significant differences between the 
techniques for all criteria, especially for the techniques at the bottom of the partici-
pants' ranking. Table 5 summarizes the significant differences that were found. 
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Table 4. Details of the post-hoc analysis for cases where one or more significant differences 
were found (●: significant difference, ○: non significant difference) 

 Mental 
demand 

Physical 
demand 

Perfor-
mance 

Effort Frustra-
tion 

Satisfac-
tion 

Move&Look-Screen-space ● ● ● ● ● ● 
Move&Look-RealMyst ● ● ● ○ ● ● 
Drag’n Go-Screen-space ● ● ● ● ○ ● 
Drag’n Go-RealMyst ● ● ● ○ ○ ○ 
Drag’n Go-DabR ○ ● ○ ○ ○ ○ 
RealMyst-Virtual joysticks ○ ● ○ ○ ○ ○ 
RealMyst-DabR ○ ○ ○ ○ ● ○ 
Screen-space-DabR ● ○ ○ ○ ● ● 
Screen-space-Virtual joystick ● ● ○ ○ ○ ● 

 
User Feedback and Observations — During the experiment we encouraged the 

participants to "think aloud" and freely comment on the interaction techniques. Com-
ments were overall in agreement with the user ranking.  

Screen-space received the most negative critics. All participants repeatedly re-
ported their frustration with this technique. They felt out of control and found the 
mappings between fingers and camera movements inconsistent. The finger move-
ments corresponding to different screen-space controls can indeed be quite similar, as 
illustrated by the optical flows of Figure 4 (e.g.  ௫ܶ  and ܴ௬ ). The output of the 
screen-space solver is also strongly influenced by the picked point in the 3D scene, 
and thus by the geometrical shape of the underlying objects. Lastly, the movements to 
execute in order to move forward ( ௭ܶ) and to zoom (ܸܱܨ) depend on whether the 
initial contact point is above or below the invisible horizon (in the former case, one 
has to move up, in the latter, one has to move down). All these reasons probably  
contribute to the fact that users were not able to anticipate camera motions. The com-
parison of Screen-space to other interaction techniques in 3D manipulation tasks cor-
roborates these observations [18].  

Participants found DabR, Virtual joysticks and RealMyst either too slow or too 
fast. We hypothesize this was caused by the use of transfer functions not specifically 
tuned for the particular 3D environment we used: long distances took too much time 
to travel while participants traveled too fast on short distances. Participants found the 
Virtual joysticks to be less fatiguing. We hypothesize this was due to the use of rate 
control, which reduces physical movements. Participants reported an important fati-
gue when using DabR and complained they had to pay attention to the number of 
fingers they used. They complained about the delay introduced by the time-based 
mode switch used by RealMyst and the fact that the traveling direction is not towards 
the selected point but along the ௭ܶ axis of the camera. Drag’n Go was particularly 
appreciated for its ability to quickly reach distant targets, but moving to a box while 
orienting the viewpoint in order to pick the sphere was found more difficult and re-
quired some planning. This was not reported as a problem with Move&Look. 
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6 Conclusion and Future Work 

In this paper, we proposed an original methodology based on user-centered practices 
and optical flow analysis to address the problem of designing intuitive multi-touch 
navigation techniques for 3D environments. User-centered practices allow to define 
the navigation commands from the user's perspective while the optical flow analysis 
provides guidelines for defining intuitive multi-touch gestures to perform these com-
mands. We instantiated this methodology for tasks articulated around the review of 
interior designs, which led to the design of a new interaction technique, Move&Look. 
The comparison of this technique to state of the art ones in a controlled experiment 
showed its overall superiority and revealed usability problems with the others. These 
results provide a first validation of the proposed design methodology. The methodol-
ogy should be applied in other navigation contexts in order to further assess its effec-
tiveness. The robustness of the proposed RST classifier should be formally evaluated, 
and it can certainly be improved. Even if participants did not complain about it, we 
observed them flattening their rotation gestures for the circle around command, prob-
ably because they unconsciously followed the corresponding optical flow. Our clas-
sifier could be modified to better take into account this oval shape, for example. 
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